
Zerocoin: Anonymous Distributed E-Cash from Bitcoin

Ian Miers, Christina Garman, Matthew Green, Aviel D. Rubin

The Johns Hopkins University Department of Computer Science, Baltimore, USA

{imiers, cgarman, mgreen, rubin}@cs.jhu.edu

Abstract—Bitcoin is the first e-cash system to see widespread
adoption. While Bitcoin offers the potential for new types of
financial interaction, it has significant limitations regarding
privacy. Specifically, because the Bitcoin transaction log is
completely public, users’ privacy is protected only through the
use of pseudonyms. In this paper we propose Zerocoin, a crypto-
graphic extension to Bitcoin that augments the protocol to allow
for fully anonymous currency transactions. Our system uses
standard cryptographic assumptions and does not introduce
new trusted parties or otherwise change the security model of
Bitcoin. We detail Zerocoin’s cryptographic construction, its
integration into Bitcoin, and examine its performance both in
terms of computation and impact on the Bitcoin protocol.

I. INTRODUCTION

Digital currencies have a long academic pedigree. As of

yet, however, no system from the academic literature has

seen widespread use. Bitcoin, on the other hand, is a viable

digital currency with a market capitalization valued at more

than $100 million [1] and between $2 and $5 million USD

in transactions a day [2]. Unlike many proposed digital

currencies, Bitcoin is fully decentralized and requires no

central bank or authority. Instead, its security depends on a

distributed architecture and two assumptions: that a majority

of its nodes are honest and that a substantive proof-of-

work can deter Sybil attacks. As a consequence, Bitcoin

requires neither legal mechanisms to detect and punish double

spending nor trusted parties to be chosen, monitored, or

policed. This decentralized design is likely responsible for

Bitcoin’s success, but it comes at a price: all transactions

are public and conducted between cryptographically binding

pseudonyms.

While relatively few academic works have considered the

privacy implications of Bitcoin’s design [2, 3], the preliminary

results are not encouraging. In one example, researchers

were able to trace the spending of 25,000 bitcoins that were

allegedly stolen in 2011 [3, 4]. Although tracking stolen coins

may seem harmless, we note that similar techniques could

also be applied to trace sensitive transactions, thus violating

users’ privacy. Moreover, there is reason to believe that

sophisticated results from other domains (e.g., efforts to de-

anonymize social network data using network topology [5])

will soon be applied to the Bitcoin transaction graph.

Since all Bitcoin transactions are public, anonymous

transactions are necessary to avoid tracking by third parties

even if we do not wish to provide the absolute anonymity

typically associated with e-cash schemes. On top of such

transactions, one could build mechanisms to partially or

explicitly identify participants to authorized parties (e.g.,

law enforcement). However, to limit this information to

authorized parties, we must first anonymize the underlying

public transactions.

The Bitcoin community generally acknowledges the

privacy weaknesses of the currency. Unfortunately, the

available mitigations are quite limited. The most common

recommendation is to employ a laundry service which

exchanges different users’ bitcoins. Several of these are in

commercial operation today [6, 7]. These services, however,

have severe limitations: operators can steal funds, track coins,

or simply go out of business, taking users’ funds with them.

Perhaps in recognition of these risks, many services offer

short laundering periods, which lead to minimal transaction

volumes and hence to limited anonymity.

Our contribution. In this paper we describe Zerocoin, a

distributed e-cash system that uses cryptographic techniques

to break the link between individual Bitcoin transactions

without adding trusted parties. To do this, we first define

the abstract functionality and security requirements of a new

primitive that we call a decentralized e-cash scheme. We next

propose a concrete instantiation and prove it secure under

standard cryptographic assumptions. Finally, we describe

the specific extensions required to integrate our protocol

into the Bitcoin system and evaluate the performance of a

prototype implementation derived from the original open-

source bitcoind client.

We are not the first to propose e-cash techniques for

solving Bitcoin’s privacy problems. However, a common

problem with many e-cash protocols is that they rely

fundamentally on a trusted currency issuer or “bank,” who

creates electronic “coins” using a blind signature scheme.

One solution (attempted unsuccessfully with Bitcoin [8])

is to simply appoint such a party. Alternatively, one can

distribute the responsibility among a quorum of nodes using

threshold cryptography. Unfortunately, both of these solutions

introduce points of failure and seem inconsistent with the

Bitcoin network model, which consists of many untrusted

nodes that routinely enter and exit the network. Moreover, the

problem of choosing long-term trusted parties, especially in

the legal and regulatory grey area Bitcoin operates in, seems

like a major impediment to adoption. Zerocoin eliminates



Block N

Block N

Block 1 Block 2 ... Block N

Block 1 Block 2 ... Block N

Bitcoin Zerocoin Mint Zerocoin Spend

(a)

(b)

Figure 1: Two example block chains. Chain (a) illustrates a normal Bitcoin transaction history, with each transaction linked

to a preceding transaction. Chain (b) illustrates a Zerocoin chain. The linkage between mint and spend (dotted line) cannot

be determined from the block chain data.

the need for such coin issuers by allowing individual Bitcoin

clients to generate their own coins — provided that they

have sufficient classical bitcoins to do so.

Intuition behind our construction. To understand the intuition

behind Zerocoin, consider the following “pencil and paper”

protocol example. Imagine that all users share access to

a physical bulletin board. To mint a zerocoin of fixed

denomination $1, a user Alice first generates a random coin

serial number S, then commits to S using a secure digital

commitment scheme. The resulting commitment is a coin,

denoted C, which can only be opened by a random number

r to reveal the serial number S. Alice pins C to the public

bulletin board, along with $1 of physical currency. All users

will accept C provided it is correctly structured and carries

the correct sum of currency.

To redeem her coin C, Alice first scans the bulletin board

to obtain the set of valid commitments (C1, . . . , CN ) that

have thus far been posted by all users in the system. She next

produces a non-interactive zero-knowledge proof π for the

following two statements: (1) she knows a C ∈ (C1, . . . , CN )
and (2) she knows a hidden value r such that the commitment

C opens to S. In full view of the others, Alice, using a

disguise to hide her identity,1 posts a “spend” transaction

containing (S, π). The remaining users verify the proof π
and check that S has not previously appeared in any other

spend transaction. If these conditions are met, the users allow

1Of course, in the real protocol Alice will emulate this by using an
anonymity network such as Tor [9].

Alice to collect $1 from any location on the bulletin board;

otherwise they reject her transaction and prevent her from

collecting the currency.

This simple protocol achieves some important aims. First,

Alice’s minted coin cannot be linked to her retrieved funds:

in order to link the coin C to the the serial number S used

in her withdrawal, one must either know r or directly know

which coin Alice proved knowledge of, neither of which are

revealed by the proof. Thus, even if the original dollar bill

is recognizably tainted (e.g., it was used in a controversial

transaction), it cannot be linked to Alice’s new dollar bill.

At the same time, if the commitment and zero-knowledge

proof are secure, then Alice cannot double-spend any coin

without re-using the serial number S and thus being detected

by the network participants.

Of course, the above protocol is not workable: bulletin

boards are a poor place to store money and critical informa-

tion. Currency might be stolen or serial numbers removed

to allow double spends. More importantly, to conduct this

protocol over a network, Alice requires a distributed digital

backing currency.2

The first and most basic contribution of our work is

to recognize that Bitcoin answers all of these concerns,

providing us with a backing currency, a bulletin board, and

a conditional currency redemption mechanism. Indeed, the

core of the Bitcoin protocol is the decentralized calculation

2One could easily imagine a solution based on existing payment networks,
e.g., Visa or Paypal. However, this would introduce the need for trusted
parties or exchanges.



of a block chain which acts as a trusted, append-only

bulletin board that can both store information and process

financial transactions. Alice can add her commitments and

escrow funds by placing them in the block chain while

being assured that strict protocol conditions (and not her

colleagues’ scruples) determine when her committed funds

may be accessed.

Of course, even when integrated with the Bitcoin block

chain, the protocol above has another practical challenge.

Specifically, it is difficult to efficiently prove that a commit-

ment C is in the set (C1, . . . , CN ). The naive solution is to

prove the disjunction (C = C1) ∨ (C = C2) ∨ . . . ∨ (C =
CN ). Unfortunately such “OR proofs” have size O(N),
which renders them impractical for all but small values of

N .

Our second contribution is to solve this problem, producing

a new construction with proofs that do not grow linearly as

N increases. Rather than specifying an expensive OR proof,

we employ a “public” one-way accumulator to reduce the

size of this proof. One-way accumulators [10, 11, 12, 13, 14],

first proposed by Benaloh and de Mare [10], allow parties to

combine many elements into a constant-sized data structure,

while efficiently proving that one specific value is contained

within the set. In our construction, the Bitcoin network com-

putes an accumulator A over the commitments (C1, . . . , CN ),
along with the appropriate membership witnesses for each

item in the set. The spender need only prove knowledge of

one such witness. In practice, this can reduce the cost of the

spender’s proof to O(log N) or even constant size.

Our application requires specific properties from the

accumulator. With no trusted parties, the accumulator and

its associated witnesses must be publicly computable and

verifiable (though we are willing to relax this requirement

to include a single, trusted setup phase in which parameters

are generated). Moreover, the accumulator must bind even

the computing party to the values in the set. Lastly, the

accumulator must support an efficient non-interactive witness-

indistinguishable or zero-knowledge proof of set membership.

Fortunately such accumulators do exist. In our concrete

proposal of Section IV we use a construction based on the

Strong RSA accumulator of Camenisch and Lysyanskaya [12],

which is in turn based on an accumulator of Baric and

Pfitzmann [11] and Benaloh and de Mare [10].

Outline of this work. The rest of this paper proceeds as

follows. In Section II we provide a brief technical overview

of the Bitcoin protocol. In Section III we formally define

the notion of decentralized e-cash and provide correctness

and security requirements for such a system. In Section IV

we give a concrete realization of our scheme based on

standard cryptographic hardness assumptions including the

Discrete Logarithm problem and Strong RSA. Finally, in

Sections V, VI, and VII, we describe how we integrate our

e-cash construction into the Bitcoin protocol, discuss the

security and anonymity provided, and detail experimental

results showing that our solution is practical.

II. OVERVIEW OF BITCOIN

In this section we provide a short overview of the Bitcoin

protocol. For a more detailed explanation, we refer the reader

to the original specification of Nakamoto [15] or to the

summary of Barber et al. [2].

The Bitcoin network. Bitcoin is a peer-to-peer network of

nodes that distribute and record transactions, and clients used

to interact with the network. The heart of Bitcoin is the

block chain, which serves as an append-only bulletin board

maintained in a distributed fashion by the Bitcoin peers.

The block chain consists of a series of blocks connected in

a hash chain.3 Every Bitcoin block memorializes a set of

transactions that are collected from the Bitcoin broadcast

network.

Bitcoin peers compete to determine which node will

generate the next canonical block. This competition requires

each node to solve a proof of work based on identifying

specific SHA-256 preimages, specifically a block B such

that SHA256(SHA256(B)) = (0ℓ||{0, 1}256−ℓ).4 The value

ℓ is selected by a periodic network vote to ensure that on

average a block is created every 10 minutes. When a peer

generates a valid solution, a process known as mining, it

broadcasts the new block to all nodes in the system. If the

block is valid (i.e., all transactions validate and a valid proof

of work links the block to the chain thus far), then the new

block is accepted as the head of the block chain. The process

then repeats.

Bitcoin provides two separate incentives to peers that mine

new blocks. First, successfully mining a new block (which

requires a non-trivial computational investment) entitles the

creator to a reward, currently set at 25 BTC.5 Second, nodes

who mine blocks are entitled to collect transaction fees from

every transaction they include. The fee paid by a given

transaction is determined by its author (though miners may

exclude transactions with insufficient fees or prioritize high

fee transactions).

Bitcoin transactions. A Bitcoin transaction consists of a set

of outputs and inputs. Each output is described by the tuple

(a, V ) where a is the amount, denominated in Satoshi (one

bitcoin = 109 Satoshi), and V is a specification of who is

authorized to spend that output. This specification, denoted

scriptPubKey, is given in Bitcoin script, a stack-based non-

Turing-complete language similar to Forth. Transaction inputs

3For efficiency reasons, this chain is actually constructed using a hash
tree, but we use the simpler description for this overview.

4Each block includes a counter value that may be incremented until the
hash satisfies these requirements.

5The Bitcoin specification holds that this reward should be reduced every
few years, eventually being eliminated altogether.



Input:

 Previous tx: 030b5937d9f4aaa1a3133b...
 Index: 0
 scriptSig: 0dcd253cdf8ea11cdc710e5e92af7647...

Output:

 Value: 5000000000
 scriptPubKey: OP_DUP OP_HASH160  
 a45f2757f94fd2337ebf7ddd018c11a21fb6c283
 OP_EQUALVERIFY OP_CHECKSIG

Figure 2: Example Bitcoin transaction. The output script

specifies that the redeeming party provide a public key that

hashes to the given value and that the transaction be signed

with the corresponding private key.

are simply a reference to a previous transaction output,6

as well as a second script, scriptSig, with code and data

that when combined with scriptPubKey evaluates to true.

Coinbase transactions, which start off every block and pay

its creator, do not include a transaction input.

To send d bitcoins to Bob, Alice embeds the hash7 of

Bob’s ECDSA public key pk b, the amount d, and some script

instructions in scriptPubKey as one output of a transaction

whose referenced inputs total at least d bitcoins (see Figure 2).

Since any excess input is paid as a transaction fee to the node

who includes it in a block, Alice typically adds a second

output paying the surplus change back to herself. Once the

transaction is broadcasted to the network and included in

a block, the bitcoins belong to Bob. However, Bob should

only consider the coins his once at least five subsequent

blocks reference this block.8 Bob can spend these coins in

a transaction by referencing it as an input and including in

scriptSig a signature on the claiming transaction under sk b

and the public key pk b.

Anonymity. Anonymity was not one of the design goals

of Bitcoin [3, 15, 17]. Bitcoin provides only pseudonymity

through the use of Bitcoin identities (public keys or their

hashes), of which a Bitcoin user can generate an unlimited

number. Indeed, many Bitcoin clients routinely generate new

identities in an effort to preserve the user’s privacy.

Regardless of Bitcoin design goals, Bitcoin’s user base

seems willing to go through considerable effort to maintain

their anonymity — including risking their money and paying

transaction fees. One illustration of this is the existence of

laundries that (for a fee) will mix together different users’

funds in the hopes that shuffling makes them difficult to

trace [2, 6, 7]. Because such systems require the users to trust

the laundry to both (a) not record how the mixing is done

6This reference consists of a transaction hash identifier as well as an
index into the transaction’s output list.

7A 34 character hash that contains the double SHA-256 hash of the key
and some checksum data.

8Individual recipients are free to disregard this advice. However, this
could make them vulnerable to double-spending attacks as described by
Karame et al. [16].

and (b) give the users back the money they put in to the pot,

use of these systems involves a fair amount of risk.

III. DECENTRALIZED E-CASH

Our approach to anonymizing the Bitcoin network uses a

form of cryptographic e-cash. Since our construction does not

require a central coin issuer, we refer to it as a decentralized

e-cash scheme. In this section we define the algorithms

that make up a decentralized e-cash scheme and describe

the correctness and security properties required of such a

system.

Notation. Let λ represent an adjustable security parameter,

let poly(·) represent some polynomial function, and let ν(·)
represent a negligible function. We use C to indicate the set

of allowable coin values.

Definition 3.1 (Decentralized E-Cash Scheme): A decen-

tralized e-cash scheme consists of a tuple of possibly

randomized algorithms (Setup,Mint, Spend,Verify).

• Setup(1λ)→ params. On input a security parameter,

output a set of global public parameters params and a

description of the set C.

• Mint(params) → (c, skc). On input parameters

params, output a coin c ∈ C, as well as a trapdoor

skc.
• Spend(params, c, skc,R,C) → (π, S). Given

params, a coin c, its trapdoor skc, some transaction

string R ∈ {0, 1}∗, and an arbitrary set of coins C,

output a coin spend transaction consisting of a proof π
and serial number S if c ∈ C ⊆ C. Otherwise output

⊥.

• Verify(params, π, S,R,C) → {0, 1}. Given params,

a proof π, a serial number S, transaction information R,

and a set of coins C, output 1 if C ⊆ C and (π, S,R)
is valid. Otherwise output 0.

We note that the Setup routine may be executed by a

trusted party. Since this setup occurs only once and does not

produce any corresponding secret values, we believe that this

relaxation is acceptable for real-world applications. Some

concrete instantiations may use different assumptions.

Each coin is generated using a randomized minting

algorithm. The serial number S is a unique value released

during the spending of a coin and is designed to prevent

any user from spending the same coin twice. We will

now formalize the correctness and security properties of

a decentralized e-cash scheme. Each call to the Spend

algorithm can include an arbitrary string R, which is intended

to store transaction-specific information (e.g., the identity of

a transaction recipient).

Correctness. Every decentralized e-cash scheme must satisfy

the following correctness requirement. Let params ←
Setup(1λ) and (c, skc) ← Mint(params). Let C ⊆ C
be any valid set of coins, where |C| ≤ poly(λ), and



assign (π, S)← Spend(params, c, skc,R,C). The scheme

is correct if, over all C, R, and random coins used in

the above algorithms, the following equality holds with

probability 1− ν(λ):

Verify(params, π, S,R,C ∪ {c}) = 1

Security. The security of a decentralized e-cash system is

defined by the following two games: Anonymity and Balance.

We first describe the Anonymity experiment, which ensures

that the adversary cannot link a given coin spend transaction

(π, S) to the coin associated with it, even when the attacker

provides many of the coins used in generating the spend

transaction.

Definition 3.2 (Anonymity): A decentralized e-cash

scheme Π = (Setup,Mint, Spend,Verify) satisfies the

Anonymity requirement if every probabilistic polynomial-

time (p.p.t.) adversary A = (A1,A2) has negligible

advantage in the following experiment.

Anonymity(Π,A, λ)
params← Setup(1λ)
For i ∈ {0, 1}: (ci, skci)← Mint(params)
(C, R, z)← A1(params, c0, c1); b← {0, 1}
(π, S)← Spend(params, cb, skcb, R,C ∪ {c0, c1})
Output: b′ ← A2(z, π, S)

We define A’s advantage in the above game as

|Pr [ b = b′ ]− 1/2|.

The Balance property requires more consideration. Intu-

itively, we wish to ensure that an attacker cannot spend more

coins than she mints, even when she has access to coins and

spend transactions produced by honest parties. Note that to

strengthen our definition, we also capture the property that

an attacker might alter valid coins, e.g., by modifying their

transaction information string R.

Our definition is reminiscent of the “one-more forgery”

definition commonly used for blind signatures. We provide

the attacker with a collection of valid coins and an oracle

Ospend that she may use to spend any of them.9 Ultimately

A must produce m coins and m+1 valid spend transactions

such that no transaction duplicates a serial number or modifies

a transaction produced by the honest oracle.

Definition 3.3 (Balance): A decentralized e-cash scheme

Π = (Setup,Mint, Spend,Verify) satisfies the Balance

property if ∀N ≤ poly(λ) every p.p.t. adversary A has

negligible advantage in the following experiment.

Balance(Π,A, N, λ)
params← Setup(1λ)
For i = 1 to N : (ci, skci)← Mint(params)
Output: (c′1, . . . , c

′
m,S1, . . . ,Sm,Sm+1)

← AOspend(·,·,·)(params, c1, . . . , cN )

9We provide this functionality as an oracle to capture the possibility that
the attacker can specify arbitrary input for the value C.

The oracle Ospend operates as follows: on the jth
query Ospend(cj ,Cj , Rj), the oracle outputs ⊥ if

cj /∈ {c1, . . . , cN}. Otherwise it returns (πj , Sj) ←
Spend(params, cj , skcj , Rj ,Cj) to A and records (Sj , Rj)
in the set T .

We say that A wins (i.e., she produces more spends

than minted coins) if ∀s ∈ {S1, . . . ,Sm,Sm+1} where

s = (π′, S′, R′,C′):

• Verify(params, π′, S′, R′,C′) = 1.

• C
′ ⊆ {c1, . . . , cN , c′1, . . . , c

′
m}.

• (S′, R′) /∈ T .

• S′ appears in only one tuple from {S1, . . . ,Sm,Sm+1}.

We define A’s advantage as the probability that A wins

the above game.

IV. DECENTRALIZED E-CASH FROM STRONG RSA

In this section we describe a concrete instantiation of a

decentralized e-cash scheme. We first define the necessary

cryptographic ingredients.

A. Cryptographic Building Blocks

Zero-knowledge proofs and signatures of knowledge. Our

protocols use zero-knowledge proofs that can be instantiated

using the technique of Schnorr [18], with extensions due to

e.g., [19, 20, 21, 22]. We convert these into non-interactive

proofs by applying the Fiat-Shamir heuristic [23]. In the

latter case, we refer to the resulting non-interactive proofs

as signatures of knowledge as defined in [24].

When referring to these proofs we will use the notation of

Camenisch and Stadler [25]. For instance, NIZKPoK{(x, y) :
h = gx ∧ c = gy} denotes a non-interactive zero-knowledge

proof of knowledge of the elements x and y that satisfy both

h = gx and c = gy. All values not enclosed in ()’s are

assumed to be known to the verifier. Similarly, the extension

ZKSoK[m]{(x, y) : h = gx ∧ c = gy} indicates a signature

of knowledge on message m.

Accumulators. Our construction uses an accumulator based

on the Strong RSA assumption. The accumulator we use

was first proposed by Benaloh and de Mare [10] and later

improved by Baric and Pfitzmann [11] and Camenisch and

Lysyanskaya [12]. We describe the accumulator using the

following algorithms:

• AccumSetup(λ)→ params. On input a security param-

eter, sample primes p, q (with polynomial dependence on

the security parameter), compute N = pq, and sample a

seed value u ∈ QRN , u 6= 1. Output (N, u) as params.

• Accumulate(params,C) → A. On input params
(N, u) and a set of prime numbers C =
{c1, . . . , ci | c ∈ [A ,B]},10 compute the accumulator A
as uc1c2···cn mod N .

10See Appendix A for a more precise description.



• GenWitness(params, v,C) → w. On input params
(N, u), a set of prime numbers C as described above,

and a value v ∈ C, the witness w is the accumu-

lation of all the values in C besides v, i.e., w =
Accumulate(params,C \ {v}).

• AccVerify(params,A, v, ω) → {0, 1}. On input

params (N, u), an element v, and witness ω, compute

A′ ≡ ωv mod N and output 1 if and only if A′ = A,

v is prime, and v ∈ [A ,B] as defined previously.

For simplicity, the description above uses the full calculation

of A. Camenisch and Lysyanskaya [12] observe that the

accumulator may also be incrementally updated, i.e., given

an existing accumulator An it is possible to add an element

x and produce a new accumulator value An+1 by computing

An+1 = Ax
n mod N . We make extensive use of this

optimization in our practical implementation.

Camenisch and Lysyanskaya [12] show that the accumu-

lator satisfies a strong collision-resistance property if the

Strong RSA assumption is hard. Informally, this ensures

that no p.p.t. adversary can produce a pair (v, ω) such that

v /∈ C and yet AccVerify is satisfied. Additionally, they

describe an efficient zero-knowledge proof of knowledge that

a committed value is in an accumulator. We convert this into

a non-interactive proof using the Fiat-Shamir transform and

refer to the resulting proof using the following notation:

NIZKPoK{(v, ω) : AccVerify((N, u), A, v, ω) = 1}.

B. Our Construction

We now describe a concrete decentralized e-cash scheme.

Our scheme is secure assuming the hardness of the Strong

RSA and Discrete Logarithm assumptions, and the existence

of a zero-knowledge proof system.

We now describe the algorithms:

• Setup(1λ)→ params. On input a security parameter,

run AccumSetup(1λ) to obtain the values (N, u). Next

generate primes p, q such that p = 2wq + 1 for w ≥ 1.

Select random generators g, h such that G = 〈g〉 =
〈h〉 and G is a subgroup of Z

∗
q . Output params =

(N, u, p, q, g, h).
• Mint(params) → (c, skc). Select S, r ← Z

∗
q and

compute c ← gShr mod p such that {c prime | c ∈
[A ,B]}.11 Set skc = (S, r) and output (c, skc).

• Spend(params, c, skc,R,C) → (π, S). If c /∈ C

output ⊥. Compute A ← Accumulate((N, u),C) and

ω ← GenWitness((N, u), c,C). Output (π, S) where π
comprises the following signature of knowledge:12

π = ZKSoK[R]{(c, w, r) :

AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}

• Verify(params, π, S,R,C)→ {0, 1}. Given a proof π,

a serial number S, and a set of coins C, first compute

11See Appendix A for a more precise description.
12See Appendix B for the construction of the ZKSoK.

A← Accumulate((N, u),C). Next verify that π is the

aforementioned signature of knowledge on R using the

known public values. If the proof verifies successfully,

output 1, otherwise output 0.

Our protocol assumes a trusted setup process for generating

the parameters. We stress that the accumulator trapdoor

(p, q) is not used subsequent to the Setup procedure and

can therefore be destroyed immediately after the parameters

are generated. Alternatively, implementers can use the

technique of Sander for generating so-called RSA UFOs

for accumulator parameters without a trapdoor [26].

C. Security Analysis

We now consider the security of our construction.

Theorem 4.1: If the zero-knowledge signature of knowl-

edge is computationally zero-knowledge in the random oracle

model, then Π = (Setup,Mint, Spend,Verify) satisfies the

Anonymity property.

We provide a proof sketch for Theorem 4.1 in Appendix A.

Intuitively, the security of our construction stems from the fact

that the coin commitment C is a perfectly-hiding commitment

and the signature proof π is at least computationally zero-

knowledge. These two facts ensure that the adversary has at

most negligible advantage in guessing which coin was spent.

Theorem 4.2: If the signature proof π is sound in the

random oracle model, the Strong RSA problem is hard, and

the Discrete Logarithm problem is hard in G, then Π =
(Setup,Mint, Spend,Verify) satisfies the Balance property.

A proof of Theorem 4.1 is included in Appendix A.

Briefly, this proof relies on the binding properties of the coin

commitment, as well as the soundness and unforgeability

of the ZKSoK and collision-resistance of the accumulator.

We show that an adversary who wins the Balance game

with non-negligible advantage can be used to either find a

collision in the commitment scheme (allowing us to solve

the Discrete Logarithm problem) or find a collision in the

accumulator (which leads to a solution for Strong RSA).

V. INTEGRATING WITH BITCOIN

While the construction of the previous section gives an

overview of our approach, we have yet to describe how our

techniques integrate with Bitcoin. In this section we address

the specific challenges that come up when we combine a

decentralized e-cash scheme with the Bitcoin protocol.

The general overview of our approach is straightfor-

ward. To mint a zerocoin c of denomination d, Alice runs

Mint(params) → (c, skc) and stores skc securely.13 She

then embeds c in the output of a Bitcoin transaction that

spends d+ fees classical bitcoins. Once a mint transaction

has been accepted into the block chain, c is included in the

13In our implementation all bitcoins have a single fixed value. However,
we can support multiple values by running distinct Zerocoin instantiations
simultaneously, all sharing the same set of public parameters.



global accumulator A, and the currency cannot be accessed

except through a Zerocoin spend, i.e., it is essentially placed

into escrow.

To spend c with Bob, Alice first constructs a partial

transaction ptx that references an unclaimed mint transaction

as input and includes Bob’s public key as output. She

then traverses all valid mint transactions in the block

chain, assembles the set of minted coins C, and runs

Spend(params, c, skc, hash(ptx),C) → (π, S). Finally,

she completes the transaction by embedding (π, S) in the

scriptSig of the input of ptx. The output of this transaction

could also be a further Zerocoin mint transaction — a

feature that may be useful to transfer value between multiple

Zerocoin instances (i.e., of different denomination) running

in the same block chain.

When this transaction appears on the network, nodes check

that Verify(params, π, S, hash(ptx),C) = 1 and check that

S does not appear in any previous transaction. If these

condition hold and the referenced mint transaction is not

claimed as an input into a different transaction, the network

accepts the spend as valid and allows Alice to redeem d
bitcoins.

Computing the accumulator. A naive implementation of

the construction in Section IV requires that the verifier re-

compute the accumulator A with each call to Verify(. . .). In

practice, the cost can be substantially reduced.

First, recall that the accumulator in our construction can

be computed incrementally, hence nodes can add new coins

to the accumulation when they arrive. To exploit this, we

require any node mining a new block to add the zerocoins in

that block to the previous block’s accumulator and store the

resulting new accumulator value in the coinbase transaction

at the start of the new block.14 We call this an accumulator

checkpoint. Peer nodes validate this computation before

accepting the new block into the blockchain. Provided that

this verification occurs routinely when blocks are added to

the chain, some clients may choose to trust the accumulator

in older (confirmed) blocks rather than re-compute it from

scratch.

With this optimization, Alice need no longer compute the

accumulator A and the full witness w for c. Instead she can

merely reference the current block’s accumulator checkpoint

and compute the witness starting from the checkpoint

preceding her mint (instead of starting at T0), since computing

the witness is equivalent to accumulating C \ {c}.

New transaction types. Bitcoin transactions use a flexible

scripting language to determine the validity of each transac-

tion. Unfortunately, Bitcoin script is (by design) not Turing-

complete. Moreover, large segments of the already-limited

14The coinbase transaction format already allows for the inclusion of
arbitrary data, so this requires no fundamental changes to the Bitcoin
protocol.

script functionality have been disabled in the Bitcoin produc-

tion network due to security concerns. Hence, the existing

script language cannot be used for sophisticated calculations

such as verifying zero-knowledge proofs. Fortunately for

our purposes, the Bitcoin designers chose to reserve several

script operations for future expansion.

We extend Bitcoin by adding a new instruction: ZERO-

COIN MINT. Minting a zerocoin constructs a transaction

with an output whose scriptPubKey contains this instruction

and a coin c. Nodes who receive this transaction should

validate that c is a well-formed coin. To spend a zerocoin,

Alice constructs a new transaction that claims as input

some Zerocoin mint transaction and has a scriptSig field

containing (π, S) and a reference to the block containing the

accumulator used in π. A verifier extracts the accumulator

from the referenced block and, using it, validates the spend

as described earlier.

Finally, we note that transactions must be signed to prevent

an attacker from simply changing who the transaction is

payed to. Normal Bitcoin transactions include an ECDSA

signature by the key specified in the scriptPubKey of the

referenced input. However, for a spend transaction on an

arbitrary zerocoin, there is no ECDSA public key. Instead, we

use the ZKSoK π to sign the transaction hash that normally

would be signed using ECDSA.15

Statekeeping and side effects. Validating a zerocoin changes

Bitcoin’s semantics: currently, Bitcoin’s persistent state

is defined solely in terms of transactions and blocks of

transactions. Furthermore, access to this state is done via

explicit reference by hash. Zerocoin, on the other hand,

because of its strong anonymity requirement, deals with

existentials: the coin is in the set of thus-far-minted coins

and its serial number is not yet in the set of spent serial

numbers. To enable these type of qualifiers, we introduce

side effects into Bitcoin transaction handling. Processing a

mint transaction causes a coin to be accumulated as a side

effect. Processing a spend transaction causes the coin serial

number to be added to a list of spent serial numbers held by

the client.

For coin serial numbers, we have little choice but to keep

a full list of them per client and incur the (small) overhead

of storing that list and the larger engineering overhead of

handling all possible ways a transaction can enter a client.

The accumulator state is maintained within the accumulator

checkpoints, which the client verifies for each received block.

Proof optimizations. For reasonable parameter sizes, the

proofs produced by Spend(. . .) exceed Bitcoin’s 10KB

transaction size limits. Although we can simply increase this

limit, doing so has two drawbacks: (1) it drastically increases

the storage requirements for Bitcoin since current transactions

15In practice, this modification simply requires us to include the transaction
digest in the hash computation of the challenge for the Fiat-Shamir proofs.
See Appendix A for details.



are between 1 and 2 KB and (2) it may increase memory

pressure on clients that store transactions in memory.16

In our prototype implementation we store our proofs in

a separate, well-known location (a simple server). A full

implementation could use a Distributed Hash Table or non

block-chain backed storage in Bitcoin. While we recommend

storing proofs in the block chain, these alternatives do not

increase the storage required for the block chain.17

A. Suggestions for Optimizing Proof Verification

The complexity of the proofs will also lead to longer

verification times than expected with a standard Bitcoin

transaction. This is magnified by the fact that a Bitcoin

transaction is verified once when it is included by a block

and again by every node when that block is accepted into

the block chain. Although the former cost can be accounted

for by charging transaction fees, it would obviously be ideal

for these costs to be as low as possible.

One approach is to distribute the cost of verification over

the entire network and not make each node verify the entire

proof. Because the ZKSoK we use utilizes cut-and-choose

techniques, it essentially consists of n repeated iterations

of the same proof (reducing the probability of forgery to

roughly 2−n). We can simply have nodes randomly select

which iterations of the proofs they verify. By distributing this

process across the network, we should achieve approximately

the same security with less duplication of effort.

This optimization involves a time-space tradeoff, since

the existing proof is verified by computing a series of (at a

minimum) 1024 bit values T1, . . . , Tn and hashing the result.

A naive implementation would require us to send T1, . . . , Tn

fully computed — greatly increasing the size of the proof –

since the client will only compute some of them but needs

all of them to verify the hash. We can avoid this issue by

replacing the standard hash with a Merkel tree where the

leaves are the hashed Ti values and the root is the challenge

hash used in the proof. We can then send the 160 bit or

256 bit intermediate nodes instead of the 1024 bit Ti values,

allowing the verifier to compute only a subset of the Ti

values and yet still validate the proof against the challenge

without drastically increasing the proof size.

B. Limited Anonymity and Forward Security

A serious concern in the Bitcoin community is the loss

of wallets due to poor endpoint security. In traditional

Bitcoin, this results in the theft of coins [4]. However, in

the Zerocoin setting it may also allow an attacker to de-

anonymize Zerocoin transactions using the stored skc. The

16The reference bitcoind client stores transactions as STL Vectors,
which require contiguous segments of memory. As such, storing Zerocoin
proofs in the transaction might cause memory issues far faster than expected.

17Furthermore, this solution allows for the intriguing possibility that
proofs be allowed to vanish after they have been sufficiently verified by the
network and entombed in the block chain. However, it is not clear how this
interacts with Bitcoin in theory or practice.

obvious solution is to securely delete skc immediately after

a coin is spent. Unfortunately, this provides no protection if

skc is stolen at some earlier point.

One solution is to generate the spend transaction imme-

diately (or shortly after) the coin is minted, possibly using

an earlier checkpoint for calculating C. This greatly reduces

the user’s anonymity by decreasing the number of coins in

C and leaking some information about when the coin was

minted. However, no attacker who compromises the wallet

can link any zerocoins in it to their mint transactions.

C. Code Changes

For our implementation, we chose to modify bitcoind,

the original open-source Bitcoin C++ client. This required

several modifications. First, we added instructions to the

Bitcoin script for minting and spending zerocoins. Next,

we added transaction types and code for handling these

new instructions, as well as maintaining the list of spent

serial numbers and the accumulator. We used the Charm

cryptographic framework [27] to implement the cryptographic

constructions in Python, and we used Boost’s Python utilities

to call that code from within bitcoind. This introduces

some performance overhead, but it allowed us to rapidly pro-

totype and leave room for implementing future constructions

as well.

D. Incremental Deployment

As described above, Zerocoin requires changes to the

Bitcoin protocol that must happen globally: while transactions

containing the new instructions will be validated by updated

servers, they will fail validation on older nodes, potentially

causing the network to split when a block is produced that

validates for some, but not all, nodes. Although this is not

the first time Bitcoin has faced this problem, and there is

precedent for a flag day type upgrade strategy [28], it is

not clear how willing the Bitcoin community is to repeat

it. As such, we consider the possibility of an incremental

deployment.

One way to accomplish this is to embed the above protocol

as comments in standard Bitcoin scripts. For non Zerocoin

aware nodes, this data is effectively inert, and we can use

Bitcoin’s n of k signature support to specify that such

comment embedded zerocoins are valid only if signed by

some subset of the Zerocoin processing nodes. Such Zerocoin

aware nodes can parse the comments and charge transaction

fees for validation according to the proofs embedded in the

comments, thus providing an incentive for more nodes to

provide such services. Since this only changes the validation

mechanism for Zerocoin, the Anonymity property holds as

does the Balance property if no more than n− 1 Zerocoin

nodes are malicious.

Some care must be taken when electing these nodes to

prevent a Sybil attack. Thankfully, if we require that such a

node also produce blocks in the Bitcoin block chain, we have



a decent deterrent. Furthermore, because any malfeasance

of these nodes is readily detectable (since they signed an

invalid Zerocoin transaction), third parties can audit these

nodes and potentially hold funds in escrow to deter fraud.

VI. REAL WORLD SECURITY AND PARAMETER CHOICE

A. Anonymity of Zerocoin

Definition 3.2 states that given two Zerocoin mints and one

spend, one cannot do much better than guess which minted

coin was spent. Put differently, an attacker learns no more

from our scheme than they would from observing the mints

and spends of some ideal scheme. However, even an ideal

scheme imposes limitations. For example, consider a case

where N coins are minted, then all N coins are subsequently

spent. If another coin is minted after this point, the size of

the anonymity set for the next spend is k = 1, not k = 11,

since it is clear to all observers that the previous coins have

been used. We also stress that — as in many anonymity

systems — privacy may be compromised by an attacker who

mints a large fraction of the active coins. Hence, a lower

bound on the anonymity provided is the number of coins

minted by honest parties between a coin’s mint and its spend.

An upper bound is the total set of minted coins.

We also note that Zerocoin reveals the number of minted

and spent coins to all users of the system, which provides

a potential source of information to attackers. This is in

contrast to many previous e-cash schemes which reveal this

information primarily to merchants and the bank. However,

we believe this may be an advantage rather than a loss,

since the bank is generally considered an adversarial party in

most e-cash security models. The public model of Zerocoin

actually removes an information asymmetry by allowing users

to determine when such conditions might pose a problem.

Lastly, Zerocoin does not hide the denominations used in

a transaction. In practice, this problem can be avoided by

simply fixing one or a small set of coin denominations and

exchanging coins until one has those denominations, or by

simply using Zerocoin to anonymize bitcoins.

B. Parameters

Generally, cryptographers specify security in terms of a

single, adjustable security parameter λ. Indeed, we have

used this notation throughout the previous sections. In reality,

however, there are three distinct security choices for Zerocoin

which affect either the system’s anonymity, its resilience to

counterfeiting, or both. These are:

1) The size of the Schnorr group used in the coin

commitments.

2) The size of the RSA modulus used in the accumulator.

3) λzkp, the security of the zero-knowledge proofs.

Commitments. Because Pedersen commitments are informa-

tion theoretically hiding for any Schnorr group whose order

is large enough to fit the committed values, the size of

the group used does not affect the long term anonymity

of Zerocoin. The security of the commitment scheme does,

however, affect counterfeiting: an attacker who can break

the binding property of the commitment scheme can mint a

zerocoin that opens to at least two different serial numbers,

resulting in a double spend. As a result, the Schnorr group

must be large enough that such an attack cannot be feasibly

mounted in the lifetime of a coin. On the other hand, the

size of the signature of knowledge π used in coin spends

increases linearly with the size of the Schnorr group.

One solution is to minimize the group size by announcing

fresh parameters for the commitment scheme periodically

and forcing old zerocoins to expire unless exchanged for

new zerocoins minted under the fresh parameters.18 Since

all coins being spent on the network at time t are spent

with the current parameters and all previous coins can be

converted to fresh ones, this does not decrease the anonymity

of the system. It does, however, require users to convert old

zerocoins to fresh ones before the old parameters expire.

For our prototype implementation, we chose to use 1024 bit

parameters on the assumption that commitment parameters

could be regenerated periodically. We explore the possibility

of extensions to Zerocoin that might enable smaller groups

in Section IX.

Accumulator RSA key. Because generating a new accumulator

requires either a new trusted setup phase or generating a

new RSA UFO [26], we cannot re-key very frequently. As a

result, the accumulator is long lived, and thus we truly need

long term security. Therefore we currently propose an RSA

key of at least 3072 bits. We note that this does not greatly

affect the size of the coins themselves, and, because the proof

of accumulator membership is efficient, this does not have

a large adverse effect on the overall coin spend proof size.

Moreover, although re-keying the accumulator is expensive,

it need not reduce the anonymity of the system since the new

parameters can be used to re-accumulate the existing coin

set and hence anonymize spends over that whole history.

Zero-knowledge proof security λzkp. This parameter affects

the anonymity and security of the zero-knowledge proof. It

also greatly affects the size of the spend proof. Thankfully,

since each proof is independent, it applies per proof and

therefore per spend. As such, a dishonest party would have

to expend roughly 2λzkp effort to forge a single coin or could

link a single coin mint to a spend with probability roughly
1

2λzkp
. As such we pick λzkp = 80 bits.

VII. PERFORMANCE

To validate our results, we conducted several experiments

using the modified bitcoind implementation described

in Section V. We ran our experiments with three different

18Note that this conversion need not involve a full spend of the coins.
The user may simply reveal the trapdoor for the old coin, since the new
zerocoin will still be unlinkable when properly spent.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1024 2048 3072

Ti
m

e 
(s

ec
)

Modulus Size (bits)

Performance of Zerocoin Algorithms

Mint
Spend
Verify

(a) Times for a single Zerocoin operation measured in seconds. These
operations do not include the time required to compute the accumulator.

 0

 5000
 10000

 15000
 20000

 25000

 30000
 35000

 40000
 45000

 50000

1024 2048 3072

Pr
oo

f S
iz

e 
(b

yt
es

)

Modulus Size (bits)

Zerocoin Spend Proof Size

(b) Zerocoin proof sizes measured in bytes as a function of RSA
modulus size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10000  20000  30000  40000  50000

Ti
m

e 
(s

ec
)

Number of Elements Accumulated

Accumulation Time

N=1024
N=2048
N=3072

(c) Time required to accumulate x elements. Note, this cost is amortized
when computing the global accumulator.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

Percentage of Zerocoins

Zerocoin Block Verification Performance

N = 1024
N = 2048
N = 3072

(d) Transaction verifications per minute as a function of the percentage
of Zerocoin transactions in the network (where half are mints and half
are spends). Note, since we plot the reciprocal of transaction time, this
graph appears logarithmic even though Zerocoin scales linearly.

Figure 3: Zerocoin performance as a function of parameter size.

parameter sizes, where each corresponds to a length of the

RSA modulus N : 1024 bits, 2048 bits, and 3072 bits.19

We conducted two types of experiments: (1) microbench-

marks that measure the performance of our cryptographic

constructions and (2) tests of our whole modified Bitcoin

client measuring the time to verify Zerocoin carrying blocks.

The former gives us a reasonable estimate of the cost of

minting a single zerocoin, spending it, and verifying the

resulting transaction. The latter gives us an estimate of

Zerocoin’s impact on the existing Bitcoin network and the

computational cost that will be born by each node that verifies

Zerocoin transactions.

All of our experiments were conducted on an Intel Xeon

E3-1270 V2 (3.50GHz quad-core processor with hyper-

threading) with 16GB of RAM, running 64-bit Ubuntu Server

11.04 with Linux kernel 2.6.38.

19These sizes can be viewed as roughly corresponding to a discrete
logarithm/factorization security level of 280, 2112, and 2

128 respectively.
Note that the choice of N determines the size of the parameter p. We select
|q| to be roughly twice the estimated security level.

A. Microbenchmarks

To evaluate the performance of our Mint, Spend, and

Verify algorithms in isolation, we conducted a series of

microbenchmarks using the Charm (Python) implementation.

Our goal in these experiments was to provide a direct estimate

of the performance of our cryptographic primitives.

Experimental setup. One challenge in conducting our mi-

crobenchmarks is the accumulation of coins in C for the

witness in Spend(. . .) or for the global accumulator in both

Spend(. . .) and Verify(. . .). This is problematic for two

reasons. First, we do not know how large C will be in

practice. Second, in our implementation accumulations are

incremental. To address these issues we chose to break our

microbenchmarks into two separate experiments. The first

experiment simply computes the accumulator for a number of

possible sizes of C, ranging from 1 to 50,000 elements. The

second experiment measures the runtime of the Spend(. . .)
and Verify(. . .) routines with a precomputed accumulator

and witness (A,ω).

We conducted our experiments on a single thread of the

processor, using all three parameter sizes. All experiments



were performed 500 times, and the results given represent

the average of these times. Figure 3a shows the measured

times for computing the coin operations, Figure 3b shows

the resulting proof sizes for each security parameter, and

Figure 3c shows the resulting times for computing the

accumulator. We stress that accumulation in our system is

incremental, typically over at most the 200−500 transactions

in a block (which takes at worst eight seconds), and hence

the cost of computing the global accumulator is therefore

amortized. The only time one might accumulate 50,000 coins

at one time would be when generating the witness for a very

old zerocoin.

B. Block Verification

How Zerocoin affects network transaction processing de-

termines its practicality and scalability. Like all transactions,

Zerocoin spends must be verified first by the miner to make

sure he is not including invalid transactions in a block and

then again by the network to make sure it is not including an

invalid block in the block chain. In both cases, this entails

checking that Verify(. . .) = 1 for each Zerocoin transaction

and computing the accumulator checkpoint.

We need to know the impact of this for two reasons. First,

the Bitcoin protocol specifies that a new block should be

created on average once every 10 minutes.20 If verification

takes longer than 10 minutes for blocks with a reasonable

number of zerocoins, then the network cannot function.21

Second, while the cost of generating these blocks and

verifying their transactions can be offset by transaction

fees and coin mining, the cost of verifying blocks prior to

appending them to the block chain is only offset for mining

nodes (who can view it as part of the cost of mining a new

block). This leaves anyone else verifying the block chain

with an uncompensated computational cost.

Experimental setup. To measure the effect of Zerocoin on

block verification time, we measure how long it takes our

modified bitcoind client to verify externally loaded test

blocks containing 200, 400, and 800 transactions where 0,

10, 25, 75, or 100 percent of the transactions are Zerocoin

transactions (half of which are mints and half are spends).

We repeat this experiment for all three security parameters.

Our test data consists of two blocks. The first contains z
Zerocoin mints that must exist for any spends to occur. The

second block is our actual test vector. It contains, in a random

order, z Zerocoin spends of the coins in the previous block,

z Zerocoin mints, and s standard Bitcoin sendToAddress

transactions. We measure how long the processblock

call of the bitcoind client takes to verify the second

block containing the mix of Zerocoin and classical Bitcoin

20This rate is maintained by a periodic network vote that adjusts the
difficulty of the Bitcoin proof of work.

21For blocks with unreasonable numbers of Zerocoin transaction we can
simply extend bitcoind’s existing anti-DoS mechanisms to reject the
block and blacklist its origin.

transactions. For accuracy, we repeat these measurements

100 times and average the results. The results are presented

in Figure 3d.

C. Discussion

Our results show that Zerocoin scales beyond current

Bitcoin transaction volumes. Though we require significant

computational effort, verification does not fundamentally

threaten the operation of the network: even with a block

containing 800 Zerocoin transactions — roughly double the

average size of a Bitcoin block currently — verification

takes less than five minutes. This is under the unreasonable

assumption that all Bitcoin transactions are supplanted by

Zerocoin transactions.22 In fact, we can scale well beyond

Bitcoin’s current average of between 200 and 400 transactions

per block [29] if Zerocoin transactions are not the majority

of transactions on the network. If, as the graph suggests, we

assume that verification scales linearly, then we can support

a 50% transaction mix out to 350 transactions per minute

(3,500 transactions per block) and a 10% mixture out to 800

transactions per minute (8,000 per block).

One remaining question is at what point we start running a

risk of coin serial number collisions causing erroneous double

spends. Even for our smallest serial numbers — 160 bits —

the collision probability is small, and for the 256 bit serial

numbers used with the 3072 bit accumulator, our collision

probability is at worst equal to the odds of a collision on a

normal Bitcoin transaction which uses SHA-256 hashes.

We stress several caveats about the above data. First, our

prototype system does not exploit any parallelism either for

verifying multiple Zerocoin transactions or in validating an

individual proof. Since the only serial dependency for either

of these tasks is the (fast) duplicate serial number check, this

offers the opportunity for substantial improvement.

Second, the above data is not an accurate estimate of

the financial cost of Zerocoin for the network: (a) it is an

overestimate of a mining node’s extra effort when verifying

proposed blocks since in practice many transactions in a

received block will already have been received and validated

by the node as it attempts to construct its own contribution

to the block chain; (b) execution time is a poor metric in

the context of Bitcoin, since miners are concerned with

actual monetary operating cost; (c) since mining is typically

performed using GPUs and to a lesser extent FPGAs and

ASICs, which are far more efficient at computing hash

collisions, the CPU cost measured here is likely insignificant.

Finally, our experiment neglects the load on a node both

from processing incoming transactions and from solving

the proof of work. Again, we contend that most nodes will

probably use GPUs for mining, and as such the latter is

not an issue. The former, however, remains an unknown. At

22In practice we believe Zerocoin will be used to anonymize bitcoins that
will then be spent in actual transactions, resulting in far lower transaction
volumes.



the very least it seems unlikely to disproportionately affect

Zerocoin performance.

VIII. PREVIOUS WORK

A. E-Cash and Bitcoin

Electronic cash has long been a research topic for cryp-

tographers. Many cryptographic e-cash systems focus on

user privacy and typically assume the existence of a semi-

trusted coin issuer or bank. E-cash schemes largely break

down into online schemes where users have contact with

a bank or registry and offline schemes where spending can

occur even without a network connection. Chaum introduced

the first online cryptographic e-cash system [30] based on

RSA signatures, later extending this work to the offline

setting [31] by de-anonymizing users who double-spent.

Many subsequent works improved upon these techniques

while maintaining the requirement of a trusted bank: for

example, by making coins divisible [32, 33] and reducing

wallet size [34]. One exception to the rule above comes

from Sander and Ta-Shma [35] who presciently developed

an alternative model that is reminiscent of our proposal: the

central bank is replaced with a hash chain and signatures

with accumulators. Unfortunately the accumulator was not

practical, a central party was still required, and no real-world

system existed to compute the chain.

Bitcoin’s primary goal, on the other hand, is not anonymity.

It has its roots in a non-academic proposal by Wei Dai

for a distributed currency based on solving computational

problems [36]. In Dai’s original proposal anyone could create

currency, but all transactions had to be broadcast to all clients.

A second variant limited currency generation and transaction

broadcast to a set of servers, which is effectively the approach

Bitcoin takes. This is a marked distinction from most, if not

all, other e-cash systems since there is no need to select one

or more trusted parties. There is a general assumption that

a majority of the Bitcoin nodes are honest, but anyone can

join a node to the Bitcoin network, and anyone can get the

entire transaction graph. An overview of Bitcoin and some

of its shortcomings was presented by Barber et. al. in [2].

B. Anonymity

Numerous works have shown that “pseudonymized” graphs

can be re-identified even under passive analysis. Narayanan

and Shmatikov [5] showed that real world social networks

can be passively de-anonymized. Similarly, Backstrom et

al. [37] constructed targeted attacks against anonymized

social networks to test for relationships between vertices.

Previously, Narayanan and Shmatikov de-anonymized users

in the Netflix prize data set by correlating data from

IMDB [38].

Bitcoin itself came into existence in 2009 and is now

beginning to receive scrutiny from privacy researchers. De-

anonymization techniques were applied effectively to Bitcoin

even at its relatively small 2011 size by Reid and Harrigan [3].

Ron and Shamir examined the general structure of the Bitcoin

network graph [1] after its nearly 3-fold expansion. Finally,

we have been made privately aware of two other early-stage

efforts to examine Bitcoin anonymity.

IX. CONCLUSION AND FUTURE WORK

Zerocoin is a distributed e-cash scheme that provides

strong user anonymity and coin security under the assumption

that there is a distributed, online, append-only transaction

store. We use Bitcoin to provide such a store and the

backing currency for our scheme. After providing general

definitions, we proposed a concrete realization based on RSA

accumulators and non-interactive zero-knowledge signatures

of knowledge. Finally, we integrated our construction into

Bitcoin and measured its performance.

Our work leaves several open problems. First, although our

scheme is workable, the need for a double-discrete logarithm

proof leads to large proof sizes and verification times. We

would prefer a scheme with both smaller proofs and greater

speed. This is particularly important when it comes to

reducing the cost of third-party verification of Zerocoin

transactions. There are several promising constructions in the

cryptographic literature, e.g., bilinear accumulators, mercurial

commitments [13, 39]. While we were not able to find an

analogue of our scheme using alternative components, it is

possible that further research will lead to other solutions.

Ideally such an improvement could produce a drop-in

replacement for our existing implementation.

Second, Zerocoin currently derives both its anonymity

and security against counterfeiting from strong cryptographic

assumptions at the cost of substantially increased computa-

tional complexity and size. As discussed in section VI-B,

anonymity is relatively cheap, and this cost is principally

driven by the anti-counterfeiting requirement, manifesting

itself through the size of the coins and the proofs used.

In Bitcoin, counterfeiting a coin is not computationally

prohibitive, it is merely computationally costly, requiring the

user to obtain control of at least 51% of the network. This

provides a possible alternative to our standard cryptographic

assumptions: rather than the strong assumption that com-

puting discrete logs is infeasible, we might construct our

scheme on the weak assumption that there is no financial

incentive to break our construction as the cost of computing

a discrete log exceeds the value of the resulting counterfeit

coins.

For example, if we require spends to prove that fresh

and random bases were used in the commitments for the

corresponding mint transaction (e.g., by selecting the bases

for the commitment from the hash of the coin serial number

and proving that the serial number is fresh), then it appears

that an attacker can only forge a single zerocoin per discrete

log computation. Provided the cost of computing such a

discrete log is greater than the value of a zerocoin, forging a

coin is not profitable. How small this allows us to make



the coins is an open question. There is relatively little

work comparing the asymptotic difficulty of solving multiple

distinct discrete logs in a fixed group,23 and it is not clear

how theory translates into practice. We leave these questions,

along with the security of the above proposed construction,

as issues for future work.

Finally, we believe that further research could lead to

different tradeoffs between security, accountability, and

anonymity. A common objection to Bitcoin is that it can

facilitate money laundering by circumventing legally binding

financial reporting requirements. We propose that additional

protocol modifications (e.g., the use of anonymous creden-

tials [40]) might allow users to maintain their anonymity

while demonstrating compliance with reporting requirements.

Acknowledgements. We thank Stephen Checkoway, George

Danezis, and the anonymous reviewers for their helpful

comments. The research in this paper was supported in part

by the Office of Naval Research under contract N00014-11-

1-0470, and DARPA and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211.

REFERENCES

[1] D. Ron and A. Shamir, “Quantitative Analysis of the Full
Bitcoin Transaction Graph,” Cryptology ePrint Archive, Report
2012/584, 2012, http://eprint.iacr.org/.

[2] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better
– how to make bitcoin a better currency,” in Financial
Cryptography 2012, vol. 7397 of LNCS, 2012, pp. 399–414.

[3] F. Reid and M. Harrigan, “An analysis of anonymity in the
Bitcoin system,” in Privacy, security, risk and trust (PASSAT),
2011 IEEE Third Internatiojn Conference on Social Computing
(SOCIALCOM). IEEE, 2011, pp. 1318–1326.

[4] T. B. Lee, “A risky currency? Alleged $500,000 Bitcoin heist
raises questions,” Available at http://arstechnica.com/, June
2011.

[5] A. Narayanan and V. Shmatikov, “De-anonymizing social net-
works,” in Security and Privacy, 2009 30th IEEE Symposium
on. IEEE, 2009, pp. 173–187.

[6] “Bitcoin fog company,” http://www.bitcoinfog.com/.

[7] “The Bitcoin Laundry,” http://www.bitcoinlaundry.com/.

[8] “Blind Bitcoin,” Information at https://en.bitcoin.it/wiki/Blind
Bitcoin Transfers.

[9] [Online]. Available: https://www.torproject.org/

[10] J. Benaloh and M. de Mare, “One-way accumulators: a
decentralized alternative to digital signatures,” in EUROCRYPT

’93, vol. 765 of LNCS, 1994, pp. 274–285.

[11] N. Barić and B. Pfitzmann, “Collision-free accumulators and
fail-stop signature schemes without trees,” in EUROCRYPT

’97, vol. 1233 of LNCS, 1997, pp. 480–494.

23We note that both SSH and the Internet Key Exchange protocol used
in IPv6 use fixed Diffie-Hellman parameters.

[12] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials,” in CRYPTO ’02, 2002, pp. 61–76.

[13] L. Nguyen, “Accumulators from bilinear pairings and appli-
cations,” in Topics in Cryptology – CT-RSA 2005, 2005, vol.
3376 LNCS, pp. 275–292.

[14] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator
based on bilinear maps and efficient revocation for anonymous
credentials,” in PKC ’09, vol. 5443 of LNCS, 2009, pp. 481–
500.

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
2009,” 2012. [Online]. Available: http://www.bitcoin.org/
bitcoin.pdf

[16] G. O. Karame, E. Androulaki, and S. Capkun, “Two bitcoins
at the price of one? double-spending attacks on fast payments
in bitcoin,” Cryptology ePrint Archive, Report 2012/248, 2012,
http://eprint.iacr.org/.

[17] European Central Bank, “Virtual currency schemes,”
Available at http://www.ecb.europa.eu/pub/pdf/other/
virtualcurrencyschemes201210en.pdf, October 2012.

[18] C.-P. Schnorr, “Efficient signature generation for smart cards,”
Journal of Cryptology, vol. 4, no. 3, pp. 239–252, 1991.

[19] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of
partial knowledge and simplified design of witness hiding
protocols,” in CRYPTO ’94, vol. 839 of LNCS, 1994, pp.
174–187.

[20] J. Camenisch and M. Michels, “Proving in zero-knowledge that
a number n is the product of two safe primes,” in EUROCRYPT

’99, vol. 1592 of LNCS, 1999, pp. 107–122.

[21] J. L. Camenisch, “Group signature schemes and payment
systems based on the discrete logarithm problem,” Ph.D.
dissertation, ETH Zürich, 1998.

[22] S. Brands, “Rapid demonstration of linear relations connected
by boolean operators,” in EUROCRYPT ’97, vol. 1233 of
LNCS, 1997, pp. 318–333.

[23] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in CRYPTO

’86, vol. 263 of LNCS, 1986, pp. 186–194.

[24] M. Chase and A. Lysyanskaya, “On signatures of knowledge,”
in CRYPTO’06, vol. 4117 of LNCS, 2006, pp. 78–96.

[25] J. Camenisch and M. Stadler, “Efficient group signature
schemes for large groups,” in CRYPTO ’97, vol. 1296 of
LNCS, 1997, pp. 410–424.

[26] T. Sander, “Efficient accumulators without trapdoor extended
abstract,” in Information and Communication Security, vol.
1726 of LNCS, 1999, pp. 252–262.

[27] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin, “Charm:
A framework for rapidly prototyping cryptosystems,” To
appear, Journal of Cryptographic Engineering, 2013. [Online].
Available: http://dx.doi.org/10.1007/s13389-013-0057-3

[28] [Online]. Available: https://en.bitcoin.it/wiki/BIP 0016



[29] [Online]. Available: http://blockchain.info/charts/n-
transactions-per-block

[30] D. Chaum, “Blind signatures for untraceable payments,” in
CRYPTO ’82. Plenum Press, 1982, pp. 199–203.

[31] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic
cash,” in CRYPTO 88, 1990, vol. 403 of LNCS, pp. 319–327.

[32] T. Okamoto and K. Ohta, “Universal electronic cash,” in
CRYPTO 91, 1992, vol. 576 of LNCS, pp. 324–337.

[33] T. Okamoto, “An efficient divisible electronic cash scheme,”
in Crypt ’95, 1995, vol. 963 of LNCS, pp. 438–451.

[34] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact
e-cash,” in EUROCRYPT ’05, 2005, vol. 3494 of LNCS, pp.
566–566.

[35] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic
cash (extended abstract),” in CRYPTO ’99, vol. 1666 of LNCS,
1999, pp. 555–572.

[36] W. Dai. B-money proposal. [Online]. Available: http:
//www.weidai.com/bmoney.txt

[37] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art
thou r3579x?: Anonymized social networks, hidden patterns,
and structural steganography,” in Proceedings of the 16th
international conference on World Wide Web, ser. WWW ’07.
New York, NY, USA: ACM, 2007, pp. 181–190.

[38] A. Narayanan and V. Shmatikov, “Robust de-anonymization
of large sparse datasets,” in IEEE Symposium on Security and
Privacy. IEEE, 2008, pp. 111–125.

[39] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin,
“Mercurial commitments with applications to zero-knowledge
sets,” in EUROCRYPT ’05, vol. 3494, 2005, pp. 422–439.

[40] J. Camenisch and A. Lysyanskaya, “An efficient system
for non-transferable anonymous credentials with optional
anonymity revocation,” in EUROCRYPT ’01, vol. 2045 of
LCNS, 2001, pp. 93–118.

[41] ——, “Dynamic accumulators and application to efficient
revocation of anonymous credentials,” in CRYPTO ’02, 2002,
extended Abstract. [Online]. Available: http://cs.brown.edu/
∼anna/papers/camlys02.pdf

[42] D. Pointcheval and J. Stern, “Provably secure blind signature
schemes,” in ASIACRYPT ’96, vol. 1163 of LNCS, 1996, pp.
252–265.

APPENDIX A.

SECURITY PROOFS

A. Proof Sketch of Theorem 4.1

Proof sketch. Consider the following simulation. First, the

simulation generates params← Setup(1λ) and two primes

C0, C1 that are uniformly sampled from the set of prime

numbers in the range [A ,B].24 A1 takes these values as

input and outputs a set C and transaction string R using

24“Where A and B can be chosen with arbitrary polynomial dependence
on the security parameter, as long as 2 < A and B < A

2.” [41] For a full
description, see [41, §3.2 and §3.3].

any strategy it wishes. Next the simulation runs A2 with a

simulated25 zero-knowledge signature of knowledge π and a

random coin serial number S sampled from Z
∗
q . Note that if

π is at least computationally zero-knowledge then with all but

negligible probability, all values provided to A are distributed

as in the real protocol. Moreover, all are independent of the

bit b. By implication, Pr [ b = b′ ] = 1/2 + ν(λ) and A’s

advantage is negligible. ✷

B. Proof of Theorem 4.2

Proof: Let A be an adversary that wins the Balance game

with non-negligible advantage ǫ. We construct an algorithm

B that takes input (p, q, g, h), where G = 〈g〉 = 〈h〉 is a

subgroup of Z
∗
p of order q, and outputs x ∈ Zq such that

gx ≡ h (mod p). B works as follows:

On input (p, q, g, h), first generate accumulator param-

eters N, u as in the Setup routine and set params ←
(N, u, p, q, g, h). For i = 1 to K, compute (ci, skci) ←
Mint(params), where skci = (Si, ri), and run

A(params, c1, . . . , cK). Answer each of A’s queries to

Ospend using the appropriate trapdoor information. Let

(S1, R1), . . . , (Sl, Rl) be the set of values recorded by the

oracle.

At the conclusion of the game, A outputs a set of M
coins (c′1, . . . , c

′

M ) and a corresponding set of M + 1 valid

tuples (π′
i, S

′
i, R

′
i,C

′
i). For j = 1 to M+1, apply the ZKSoK

extractor to the jth zero-knowledge proof π′
j to extract the

values (c∗j , r
∗
j ) and perform the following steps:

1) If the extractor fails, abort and signal EVENTEXT.

2) If c∗j /∈ C
′
j , abort and signal EVENTACC.

3) If c∗j ∈ {c1, . . . , cK}:

a) If for some i, (S′
j , r

∗
j ) = (Si, ri) and R′

j 6= Ri,

abort and signal EVENTFORGE.

b) Otherwise if for some i, (S′
j , r

∗
j ) = (Si, ri), abort

and signal EVENTCOL.

c) Otherwise set (a, b) = (Si, ri).

4) If for some i, c∗j = c∗i , set (a, b) = (S′
i, r

∗
i ).

If the simulation did not abort, we now have

(c∗j , r
∗
j , S

′
j , a, b) where (by the soundness of π) we know

that c∗j ≡ gS
′

jhr∗j ≡ gahb (mod p). To solve for logg h,

output (S′
j − a) · (b− r′j)

−1 mod q.

Analysis. Let us briefly explain the conditions behind this

proof. When the simulation does not abort, we are able to

extract (c∗1, . . . , c
∗

M+1) where the win conditions enforce that

∀j ∈ [1,M + 1], c∗j ∈ C
′
j ∈ {c1, . . . , cK , c′1, . . . , c

′

M} and

each S′
j is distinct (and does not match any serial number

output by Ospend). Since A has produced M coins and yet

spent M + 1, there are only two possibilities:

1) A has spent one of the challenger’s coins but has

provided a new serial number for it. For some (i, j),

25Our proofs assume the existence of an efficient simulator and extractor
for the ZKSoK. See Appendix B.



c∗j = ci ∈ {c1, . . . , cK}. Observe that in cases where

the simulation does not abort, the logic of the simu-

lation always results in a pair (a, b) = (Si, ri) where

gahb ≡ gS
′

jhr∗j ≡ c∗j (mod p) and (a, b) 6= (S′
j , r

∗
j ).

2) A has spent the same coin twice. For some (i, j),
c∗j = c∗i and yet (S′

j 6= S′
i). Thus again we identify

a pair (a, b) = (S′
i, r

∗
i ) that satisfies gahb ≡ c∗j

(mod p) where (a, b) 6= (S′
j , r

∗
j ).

Finally, we observe that given any such pair (a, b) we can

solve for x = logg h using the equation above.

Abort probability. It remains only to consider the probability

that the simulation aborts. Let ν1(λ) be the (negligible)

probability that the extractor fails on input π. By sum-

mation, Pr [ EVENTEXT ] ≤ (M + 1)ν1(λ). Next consider

the probability of EVENTCOL. This implies that for some

i, A has produced a pair (S′
j , r

∗
j ) = (Si, ri) where S′

j

has not been produced by Ospend. Observe that there are

l distinct pairs (S, r) that satisfy c∗j = gShr mod p and

A’s view is independent of the specific pair chosen. Thus

Pr [ EVENTCOL ] ≤ 1/l.
Next, we argue that under the Strong RSA and Dis-

crete Log assumptions, Pr [ EVENTACC ] ≤ ν2(λ) and

Pr [ EVENTFORGE ] ≤ ν3(λ). We show this in Lemmas A.1

and A.2 below. If A succeeds with advantage ǫ, then by

summing the above probabilities we show that B succeeds

with probability ≥ ǫ−((M+1)ν1(λ)+ν2(λ)+ν3(λ)+1/l).
We conclude with the remaining Lemmas.

Lemma A.1: Under the Strong RSA assumption,

Pr [ EVENTACC ] ≤ ν2(λ).

Proof sketch. The basic idea of this proof is that an A′ who

induces EVENTACC with non-negligible probability can be

used to find a witness ω to the presence of a non-member in a

given accumulator. Given this value, we apply the technique

of [12, §3] to solve the Strong RSA problem. For the complete

details we refer the reader to [12, §3] and simply outline the

remaining details of the simulation.

Let A′ be an adversary that induces EVENTACC with non-

negligible probability ǫ′ in the simulation above. We use

A′ to construct a Strong RSA solver B′ that succeeds with

non-negligible probability. On input a Strong RSA instance

(N, u), B′ selects (p, q, g, h) as in Setup and sets params =
(N, u, p, q, g, h). It generates (c1, . . . , cK) as in the previous

simulation and runs A′. To induce EVENTACC, A′ produces

valid output (π′,C′) and (by extraction from π′) a c∗ /∈ C
′.

B′ now extracts ω∗ from π′ using the technique described

in [12, §3] and uses the resulting value to compute a solution

to the Strong RSA instance. ✷

Lemma A.2: Under the Discrete Logarithm assumption,

Pr [ EVENTFORGE ] ≤ ν3(λ).

Proof sketch. We leave a proof for the full version of this

paper, but it is similar to those used by earlier schemes,

e.g., [25]. Let A′ be an adversary that induces EVENTFORGE

with non-negligible probability ǫ′ in the simulation above.

On input a discrete logarithm instance, we run A′ as in

the main simulation except that we do not use the trapdoor

information to answer A′’s oracle queries. Instead we select

random serial numbers and simulate the ZKSoK responses

to A′ by programming the random oracle. When A′ outputs

a forgery on a repeated serial number but a different string

R′ than used in any previous proof, we rewind A′ to extract

the pair (S′
j , r

∗
j ) and solve for the discrete logarithm as in

the main simulation. ✷

APPENDIX B.

ZERO-KNOWLEDGE PROOF CONSTRUCTION

The signature of knowledge

π = ZKSoK[R]{(c, w, r) :

AccVerify((N, u), A, c, w) = 1 ∧ c = gShr}

is composed of two proofs that (1) a committed value c
is accumulated and (2) that c is a commitment to S. The

former proof is detailed in [41, §3.3 and Appendix A]. The

latter is a double discrete log signature of knowledge that,

although related to previous work [21, §5.3.3], is new (at

least to us). A proof of its security can be found in the full

version of this paper. It is constructed as follows:

Given y1 = ga
xbzhw.

Let l ≤ k be two security parameters and H :
{0, 1}∗ → {0, 1}k be a cryptographic hash func-

tion. Generate 2l random numbers r1, . . . , rl and

v1, . . . , vl. Compute, for 1 ≤ i ≤ l, ti = ga
xbrihvi .

The signature of knowledge on the message m is

(c, s1, s2, . . . , sl, s
′
1, s

′
2, . . . , s

′

l), where:

c = H(m‖y1‖a‖b‖g‖h‖x‖t1‖ . . . ‖tl)

and

if c[i] = 0 then si = ri, s
′

i = vi;

else si = ri − z, s′i = vi − wbri−z;

To verify the signature it is sufficient to compute:

c′ = H(m‖y1‖a‖b‖g‖h‖x‖t̄1‖ . . . ‖t̄l)

with

if c[i] = 0 then t̄i = ga
xbsihs′i ;

else t̄i = yb
si

1 hs′i ;

and check whether c = c′.

Simulating and extracting. Our proofs in Appendix A assume

the existence of an efficient simulator and extractor for the

signature of knowledge. These may be constructed using well-

understood results in the random oracle model, e.g., [25, 42].

We provide further details in the full version of this work.


