
Bitcoin Covenants

Malte Möser1, Ittay Eyal2, and Emin Gün Sirer2

1 Department of Information Systems, University of Münster, Germany
2 Department of Computer Science, Cornell University, USA

Abstract. This paper presents an extension to Bitcoin’s script language
enabling covenants, a primitive that allows transactions to restrict how
the value they transfer is used in the future. Covenants expand the set of
financial instruments expressible in Bitcoin, and enable new powerful and
novel use cases. We illustrate two novel security constructs built using
covenants.
The first, vaults, focuses on improving the security of private cryptographic
keys. Historically, maintaining these keys securely and reliably has been
a critical vulnerability for Bitcoin users. We show how covenants enable
vaults, which disincentivize key theft by preventing an attacker from
gaining full access to stolen funds.
The second construct, poison transactions, is a generally useful mechanism
for penalizing double-spending attacks. Bitcoin-NG, a protocol that has
been recently proposed to improve Bitcoin’s throughput, latency and
overall scalability, requires this feature. We show how covenants enable
poison transactions, and detail how Bitcoin-NG can be implemented
progressively as an overlay on top of the Bitcoin blockchain.

1 Introduction

Bitcoin is an innovative payment system built to enable a wide variety of financial
contracts that are executed in a decentralized manner. Part of its power and
expressiveness derives from the way transactions use a flexible script language
to specify redemption criteria. The system ensures that subsequent transactions
must fulfill the redemption criteria in order to unlock the embedded value.
While traditional financial contracts rely on trust and after-the-fact enforcement,
Bitcoin’s scripting mechanism allows to enforce contracts within the currency
system itself.

Yet, the functionality provided by the scripting language is characterized by
an inherent trade-off between security, efficiency, and expressiveness. Currently,
the expressiveness of the script language is limited, not only by the constricted
operations of the language, but also by the information that can be accessed in
or checked by a script program.

To extend the capabilities of the system, we propose an extension to Bitcoin’s
script language that enables covenants3: transactions that are able to enforce re-

3 A covenant is a special contract in property law that restricts the use of an object,
typically restricting the use of land for certain purposes. We adopt the term from
earlier discussions on related ideas [22], which are discussed in Section 6.

2 Malte Möser, Ittay Eyal, and Emin Gün Sirer

strictions on the composition of subsequent transactions (cf. Section 3). Covenants
enable multiple novel and powerful use cases. We first illustrate the power of
covenants by describing how colored coins, a well-established but ill-supported
idea to attach meaning beyond nominal value to bitcoins, would benefit from the
ability to prevent such coins from accidentally mixing into general circulation.
We then focus on two new use cases.

First, we use covenants to implement secure vaults, which addresses one
of the biggest problems of cryptocurrency security: the difficulty of secure key
management. Vaults improve end-user security by disincentivizing theft of coins
using a mechanism that prevents an attacker from gaining full control over funds
despite stealing the private keys used to secure them (cf. Section 4).

Then, we describe how covenant functionality enables new overlays to be
placed on top of the Bitcoin blockchain. Making changes to the consensus protocol
of a cryptocurrency is a difficult process as it requires agreement by participants
and stakeholders. Bitcoin-NG [16] is an alternative blockchain protocol that
promises significant improvement in transaction throughput and confirmation
delay. However, changing Bitcoin’s blockchain protocol would require a change
to Bitcoin’s consensus protocol, a daunting task.

We use covenants to implement poison transactions, which invalidate a deposit
using fraud proof. With poison transactions, we detail the implementation of
Bitcoin-NG as an overlay on top of Bitcoin. This implementation can be pro-
gressively adopted, not requiring a change of the consensus rules (cf. Section 5)
beyond the general functionality of covenants.

In summary, this paper makes the following contributions:

1. Covenants, a new script operation that enables novel security constructs,
2. Vaults, a construct that reduces private key theft incentives by prohibiting

an attacker from gaining control of funds, and
3. An implementation of Bitcoin-NG as an overlay using covenant-enabled

poison transactions.

We review related work in Section 6 and conclude in Section 7.

2 Preliminaries

Bitcoin is a distributed, decentralized cryptocurrency [23] that uses a probabilistic
consensus protocol to serialize transactions of the currency among its users.
We describe the elements of Bitcoin’s design relevant to this work, a detailed
description of the system can be found in [4, 26].

The novel data structure used in Bitcoin, and many other derived altcoins
[14, 21], is the blockchain, an append-only log used to track and store currency
transactions. To serialize new transactions, miners aggregate transactions in a
block and append the block to the ledger by solving a proof of work crypto puzzle.
This process is financially rewarded by allowing the successful miner to mint new
coins in a special coinbase transaction.

Bitcoin Covenants 3

Rather than having a notion of accounts and transactions among accounts,
as in earlier cryptocurrency systems [9, 27], Bitcoin tracks the individual coins,
or, more accurately, fractions of coins. Each transaction in Bitcoin describes the
movement of coins from one logical location to another. Cryptographic tools
allow only designated principals to move coins out of a location.

Transaction structure The logical locations are called transaction outputs. Each
transaction contains an array of such outputs and specifies the amount of currency
it places in each. A location is uniquely defined by the unique transaction identifier
and the index of the output. The coins placed are moved, or spent, from their
previous locations, namely transaction outputs of previous transactions. The
sources are listed in the transaction in an array of transaction inputs. We note
that there is no notion of individual coin tracking — there is no meaningful way
to connect specific inputs to specific outputs.

The sum of values in the outputs referenced by a transaction’s input array
is the total input value of the transaction. The total output value, given by the
sum of values in the transaction’s output array, cannot be larger than the total
input value. Any value not accounted for is transacted to an output specified by
the miner who generated the block in the block’s coinbase transaction.

Each transaction furthermore has a locktime field that determines the minimal
time (block number or unix time) after which it can be placed.

Script To make sure that funds can only be spent by designated principals,
spending an output requires satisfying a predicate. Such a predicate is included
in each output as a program written in a stack-based language called Script [23].
Inputs redeeming an output have to provide data to the output’s program. A
transaction is valid if its inputs yield true for all corresponding outputs.

In the common case, transactions are secured with public-key cryptography.
The logical location of a coin is defined by the public key supplied in the output’s
script program. The owner, and only this owner, can move the coins by proving
her control of the matching private key in the input.

Typical output script programs require the ownership of one or more private
keys for successful validation by including public keys or hashes thereof. To
validate signatures corresponding to the keys listed, the script language contains
a CheckSig operation that accepts a signature and a public key, and then verifies
the validity of the signature computed over the spending transaction. A detailed
step-by-step execution of a script program can be found in [26].

The Bitcoin script language is intentionally restricted to a small set of opcodes,
prioritizing security and efficiency over expressiveness and feature-completeness.
A key limitation is that the scope of Bitcoin’s script operations is restricted to
the data provided in the output program and the data provided in the input
script. This rule will, however, soon have an exception in the form of two new
opcodes (which we will use) called CheckLockTimeVerify (CLTV) [25] and
CheckSequenceVerify (CSV) [6]. These allow to make an output unspendable
until a certain point in time is reached. This extends the awareness of the script
to the current position of the transaction in the blockchain.

4 Malte Möser, Ittay Eyal, and Emin Gün Sirer

Algorithm 1: Specification of CheckOutputVerify
1 On CheckOutputVerify(index, value, pattern)
2 if not exists output at output index then

3 return False

4 if value 6= 0 then (Check value)
5 if (value at output index) 6= value then

6 return False

7 if pattern 6= 0 then (Check pattern)
8 sanitizedPattern ← pattern, replacing pattern-placeholders with pattern,

then replacing key placeholders with 0’s
9 map ← 1’s of length sanitizedPattern, but 0’s at key placeholders

10 if (script at output index bitwise-and map) 6= sanitizedPattern then

11 return False

12 return True

3 Covenants

Our main contribution is an extension of Bitcoin’s script language to enable
covenants: restrictions on future use of coins. Covenants enable a transaction
output to restrict the outputs in its spending transaction. Using a form of
reflection, a covenant can be specified recursively. This enables the enforcement
of covenants across a potentially unlimited number of subsequent transactions.

In this section, we describe the operation of single-use covenants (Section 3.1)
and show how to extend them into the future by applying them recursively
(Section 3.2). As a running example, we use distinguished coins (Section 3.3).
Inspired by colored coins [11], distinguished coins are tokens that correspond to
real-world assets that should not be mixed or merged with others.

3.1 Basic Covenants

Each transaction output consists of an amount and an output script program.
We enable covenants by adding a new operation to the scripting language that
restricts both of these fields. Specifically, the operation takes an output index,
an amount and a pattern. It verifies that the output at the given index exists,
that it carries the required amount and that its script matches a given pattern.
Algorithm 1 shows the formal specification.

We implement this operation as a patch of Bitcoin Core, the standard Bitcoin
client, as an opcode, CheckOutputVerify. The opcode expects the index as the
first parameter, allowing to place it in the input of the spending transaction. The
creator of the spending transaction can therefore determine the output’s position.

The script pattern is simply a script program with placeholders for variable
parts. We make use of two placeholder opcodes that are already used internally
by the client, namely PubKey and PubKeyHash, to represent arbitrary public keys
or hashes of public keys within the pattern.

Bitcoin Covenants 5

Both placeholders represent fields of static size. The script interpreter replaces
each placeholder with the appropriate number of zero-bits. Separately, it creates
a bitmask with the program’s size that masks out these placeholder locations. A
bitwise comparison of both programs sanitized with the bitmask then yields the
verification results.

There may exist scenarios in which it is only necessary to check the value or
the script program, but not both. In this case, either of those values can be set
to 0. This prevents one from requiring that an output script is actually equal to
False, which prevents any future spending of the output. It also prevents one
from requiring that an output carries 0 value, which is not a useful notion either.

A toy example will lead us to the construction of the distinguished coins
covenant. Here, we will let a specific 1 BTC stand in for the ownership of a real-
world asset. The transaction output requires that the subsequent output sends
exactly 1 BTC to an arbitrary public key. We supply CheckOutputVerify with
(1) an output index of 0, (2) an amount of 1 BTC (specified as 100,000,000 units
of 10−8 Bitcoin, called Satoshis) and (3) a pattern that contains a placeholder
for a public key (PubKey) followed by the CheckSig opcode:

0 <100000000 > <PubKey CheckSig > CheckOutputVerify.

This covenant ensures that the bitcoin corresponding to the asset can only
be transferred in whole and cannot be mixed with other coins. This particular
covenant, however, only holds for one transaction.

3.2 Recursive Covenants

It is critical to be able to apply covenants to an entire chain of transactions that
derive from a covenant-bearing transfer. This section describes how this can be
accomplished with recursive covenants.

We start by enforcing our example covenant over two subsequent transactions
by including the covenant for the second output in the covenant for the first
output. Modifying our example, the following script program not only enforces
the first output in the next transaction to have a value of 1 BTC, but also puts
the same restriction on the first output in the subsequent transaction (we omit
the output’s index hereinafter as they can be supplied in the input script).

<100000000 > < <100000000 > <PubKey CheckSig > CheckOutputVerify

PubKey CheckSig > CheckOutputVerify <keyDest > CheckSig

To extend the sequence of outputs further, we could again include another
CheckOutputVerify command in the innermost script pattern. Since we cannot
repeat this infinitely, and instead of creating a self-reproducing script (a Quine),
we use the interpreter to replace a dedicated keyword with the pattern itself.

We therefore add a new placeholder opcode called Pattern that allows to
specify the occurrence of the pattern within itself. When evaluating a pattern,
the Pattern opcode will be replaced by the pattern itself, thereby resolving the
recursion one step at a time. The following example demonstrates the basic use
of the Pattern opcode.

6 Malte Möser, Ittay Eyal, and Emin Gün Sirer

<100000000 > < <100000000 > Pattern CheckOutputVerify PubKey

CheckSig > CheckOutputVerify <keyDest > CheckSig

When evaluating the pattern in this script program, the Pattern opcode will be
replaced by the full pattern itself, yielding the exact same script as a pattern for
comparison with the script program of the spending output.

3.3 Distinguished Coins

Many (most notably [11]) have noted that Bitcoin can be used as a digital
asset exchange mechanism by associating a physical asset to a certain coin. For
example, one could attach an arbitrary amount of bitcoins to a certain amount
of gold, deposited with a trusted party. This coin could then be used to represent
ownership of the gold and be easily traded.

However, as we noted above, bitcoin amounts are not separately tracked
by the system, as every Bitcoin transaction inherently mixes all of its inputs’
values. In contrast, covenants are carried from one input to a distinct set of
outputs, thereby making it possible to meaningfully link currency flows. Our
running example constructs distinguished coins by enforcing the coin to retain
its distinguished status in all subsequent transactions.

A small security issue inherent to the script used so far is that a user can
have multiple distinguished coins with the same value. When the output index is
explicitly provided in the input, a user could reuse the same index for multiple
covenants and thereby invalidate all but one of the distinguished coins. Solving
this problem is straightforward as each distinguished coin can include a unique
identifier in the script that prevents mapping multiple inputs to the same output,
as in the following example. First, we define patternDistinguishedWithId as

<assetId > Drop <value> Pattern CheckOutputVerify PubKey

CheckSig ,

and the distinguished coin covenant is

<assetId > Drop <value> <patternDistinguishedWithId >

CheckOutputVerify <keyDest > CheckSig .

3.4 Overhead

The CheckOutputVerify opcode maintains Script’s simplicity, and does not
introduce excessive overhead. While CheckOutputVerify does not enable loops,
a näıve implementation (verbatim following the specification of Algorithm 1)
could cause the interpreter to form an excessively large final script program
with repeated use of the Pattern opcode. To mitigate this concern, instead
of first replacing all Pattern placeholder with the script itself, the interpreter
incrementally expands the pattern and compares the prefix, thereby bounding
the overhead to the parsing time of the output to be matched.

Bitcoin Covenants 7

3.5 Discussion

Variants. There are a few design choices in our implementation of covenants. For
instance, the covenant opcode could be made more flexible than a simple match.
One option is that the opcode can return true or false on the stack, indicating
the verification result. This would allow for elaborate combinations of validity
conditions. Similarly, an opcode can return the output value, allowing arithmetic
operations for validation.

Our current implementation allows covenants in different transaction inputs to
refer to the same outputs, which requires some diligence of covenant programmers.
This behavior can be removed by enforcing a one-to-one mapping of output checks
to transaction outputs. Each transaction input can check any number of the
outputs and map these outputs in order, according to the transaction input order
and the access order with CheckOutputVerify. This alternative implementation
introduces slightly more complexity, but is also more resilient to human error.

Covenant termination. As part of the covenant programmer’s responsibility, we
note that in various cases covenants should enable an exit strategy, allowing to
repurpose a coin, for example after a set time or with a specific private key.

4 Vault Transactions

Bitcoin funds are, by and large, protected by sets of cryptographic secret keys.
Whoever knows those keys can instantly, anonymously, and irrevocably move the
funds by spending the transaction outputs in which they are represented.

This makes Bitcoin private key theft an attractive target for thieves. A long
list of thefts has been curated by the Bitcoin community [20], illustrating that
attackers have been able to steal bitcoins worth millions of USD. Even major
Bitcoin companies frequently fall prey to such attacks (e. g., [19]).

Correctly managing private keys is therefore one of the central challenges
for client-side security in Bitcoin in order to protect users from both accidental
loss and deliberate theft. A recent study by Eskandari et al. evaluated different
methods of key management and concluded that each of them is vulnerable to a
range of attacks [15].

A common approach for storing bitcoins in a secure manner is to put them into
“cold storage”, which means that their keys are stored on a device not connected
to the Internet. However, in order to retrieve the coins, one must regularly (albeit
infrequently) interact with those keys, which makes them vulnerable as well.

We now introduce recoverable vaults, which reduce the incentive for Bitcoin
private key theft. Vaults provide two mechanisms to increase security. First, funds
stored in a vault can be recovered using a recovery key in case the vault key
is compromised. Second, in case the recovery key is compromised as well, the
owner can still prevent the attacker from moving the coins; the worst the attacker
can do is to prevent the owner from regaining full control over the funds. As
this reduces the motivation for key theft, users can be more permissive in their
storage of the private keys, reducing the chances of key loss.

8 Malte Möser, Ittay Eyal, and Emin Gün Sirer

Vault
Fund

Vault
Spend

Regular
Spend

Vault
Recovery

Regular
Spend

//
100 blocks

//
100 blocks

Fig. 1. The attackers spending attempt (red) is interrupted by a vault recovery issued
by the legitimate owner, followed by a regular spend of the legitimate owner (green)

Note As explained below, vault transactions use a delay mechanism. We note
that vault transactions cannot be implemented with existing timing mechanisms
such as the CheckLockTimeVerify opcode or transaction locktime.

4.1 Overview

Vault transactions prevent an attacker from instantly moving funds from a
victim’s wallet by enforcing a delay for the transfer of those bitcoins. Coins placed
in a vault transaction cannot be released immediately. The key idea of vaults is
that the spending transaction has to be placed publicly on the blockchain, with
its output locked for a specified amount of time. During this period, the owner of
the coins can abort the release of the coins using a recovery key (preferably placed
in cold storage) to send them to a different address in a new spending transaction,
thereby denying the payout from the attacker. When the attacker also gains
access to the recovery key, she can use the same recovery mechanism to again try
to send the funds to her address. However, as the covenant is enforced recursively,
the legitimate owner can again cancel the payout. Using a long locktime, it is
cheap for the legitimate owner to maintain the block.

While ultimately the attacker can blackmail an owner, promising a share of
the funds once they are released, this increases both the cost and the exposure
of the attacker due to the need to communicate with the victim and provides a
lead for criminal investigations.

4.2 Architecture

To secure an amount with a vault, a user sends it to a vault fund transaction.
The output of this transaction requires a signature corresponding to the vault
key and contains a covenant script program that enforces that the output cannot
be spent directly, but must be spent through a vault spend transaction. The vault
spend offers two possibilities to redeem its funds. First, the funds can be spent
to a standard output, but only after a certain time has passed, e. g., 100 blocks
using a locktime. This is the timer on the vault. When there is no attack, this
simply delays the payout from a vault.

Alternatively, the funds can be spent at any time (without having to wait for
the locktime to expire) using the recovery key in another vault spend, identical
to the first one (cf. Figure 1). This effectively resets the locktime of the funds.

Bitcoin Covenants 9

4.3 Script Programs

In the following we provide the script programs implementing vault transactions.
Beside our CheckOutputVerify, we assume the availability of another opcode
that is currently being developed called CheckSequenceVerify (CSV) [6], which
allows outputs to specify a locktime relative to the block height (or timestamp)
when their containing transaction is committed to the blockchain.4

Vault Spend Assume that 1 BTC has been locked in a vault. To spend this
bitcoin, the payout transaction has to specify a relative locktime (using CSV)
after which the coin can be redeemed with the signature belonging to a certain
public key. Before the locktime expires, the funds can be moved to an output
that retains the value and adheres to the vault pattern (which we describe below).
This new output must be accompanied with a signature corresponding to the
recovery key.

If

<100> CheckSequenceVerify <keyDest > CheckSig

Else

<100000000 > <patternVault > CheckOutputVerify <keyRecovery >

CheckSig

EndIf

Pattern To enforce the above script program structure, we use the following
pattern. Coins can be spent with an arbitrary public key (specified by the PubKey
placeholder) after a relative locktime of 100 blocks has passed, or immediately
respent in an output that adheres to the same pattern (enforced through the
Pattern placeholder) and provides a valid signature with the recovery key.

If

<100> CheckSequenceVerify PubKey CheckSig

Else

<100000000 > Pattern CheckOutputVerify <keyRecovery >

CheckSig

EndIf

Vault Fund To initially lock funds in a vault, we use a script program which speci-
fies that an output in the redeeming transaction must adhere to the patternVault,
have the same value (otherwise it would be possible to retrieve the money through
another output) and that the transaction has to provide a valid signature corre-
sponding to the vault key.

<100000000 > Pattern CheckOutputVerify <keyVault > CheckSig

4 We abstract from opcode behavior specific to Bitcoin’s soft-fork upgrade mechanism,
namely the need to drop items from the stack afterwards.

10 Malte Möser, Ittay Eyal, and Emin Gün Sirer

5 Bitcoin-NG Overlay

Bitcoin-NG is a blockchain protocol that offers major improvements of transaction
bandwidth and latency in comparison to Bitcoin [16]. We explain how we can
use covenants to deploy Bitcoin-NG’s core features on top of Bitcoin, so users
can benefit from improved efficiency. This allows to gradually deploy Bitcoin-NG,
with nodes gradually adopting it.

In the following, we overview the Bitcoin-NG protocol (Section 5.1) demon-
strate how such a deployment can be carried out (Section 5.2) and how covenants
allow to implement Bitcoin-NG on top of Bitcoin by providing a mechanism to
realize poison transactions (Section 5.3).

5.1 Preliminaries: Bitcoin-NG Operation

Bitcoin-NG’s blockchain has two types of blocks. Key-blocks are generated with
proof of work, like in Bitcoin, but contain no transactions. They serve as a leader
election mechanism and contain a public key that identifies the chosen leader.
Once a leader is elected, she publishes microblocks that contain transactions.

In order to motivate participants to follow the protocol, Bitcoin-NG uses the
following mechanisms. As in Bitcoin, proof-of-work is motivated by a subsidy —
a prize for mining. As in Bitcoin, each transaction pays a fee to the system,
but unlike Bitcoin, this fee is distributed, with 40% to the leader, and 60%
to the subsequent leader. Finally, if a leader forks the chain by generating two
microblocks with the same parent, she is punished by revoking her subsidy
revenue; whoever detects the fraud wins a nominal fee.

5.2 Overlaying Bitcoin-NG on Top of Bitcoin

Our goal is to have Bitcoin-NG nodes use the Bitcoin protocol when communi-
cating with other Bitcoin nodes, but use the Bitcoin-NG protocol when talking
to Bitcoin-NG nodes.

To achieve this, all the information in Bitcoin-NG blocks — both key-blocks
and microblocks — must be translated into standard Bitcoin blocks for com-
patibility. Specifically, key-blocks are mapped to standard Bitcoin blocks. We
start with the case where consecutive key-blocks are found by Bitcoin-NG miners.
The second miner puts all transactions placed in microblocks by the previous
miner into the mapped Bitcoin block. When Bitcoin-NG nodes communicate
with each other, they exchange key-block and microblock data structures. A
Bitcoin-NG node can reconstruct the standard Bitcoin blocks on demand. How-
ever, if a Bitcoin-NG node communicates with a standard Bitcoin node, it sends
the standard blocks, which contain all the transactions. For both Bitcoin and
Bitcoin-NG nodes, mining is performed on the standard Bitcoin blocks, again,
for backward compatibility.

Recall that in Bitcoin-NG the transaction fees are distributed among the
current and next leaders. In the overlay implementation, the microblock transac-
tions are actually placed in the subsequent key-block, and their fees go to the

Bitcoin Covenants 11

NG NG BTC NG

60% 60%40% 100% 60%

40%

discarded as fork

Fig. 2. Structure of a mixed Bitcoin and Bitcoin-NG blockchain

subsequent leader. This key-block must therefore redistribute those fees. If the
fees are not distributed correctly, the block is not a valid Bitcoin-NG key-block,
and it is considered a standard block by the protocol.

However, if not all miners are running the Bitcoin-NG client, some blocks
are found by non-NG miners. These do not respect the microblock chain of the
current leader, and do not distribute the fees correctly. If a Bitcoin-NG key-block
(and its microblocks) is followed by a standard block, Bitcoin-NG-miners discard
the current microblock chain; the leader, previously chosen, remains leader and
starts a new microblock chain on top of the standard block. This is illustrated in
Figure 2. A new leader will thus pay 40% of the fees in the latest microblock
chain to the previous leader, no matter how many standard block separate its
key-block from the previous leader’s key-block. Keeping the leader across standard
blocks has two objectives. First, the Bitcoin-NG fast transaction commitment
can be used even after standard blocks. Second, it increases the incentive to run a
Bitcoin-NG node, as the leader is guaranteed to win 40% of a subsequent epoch,
even if not the immediate next one.

5.3 Poison Transactions

The missing piece towards deploying Bitcoin-NG on top of Bitcoin are poison
transactions. Leaders commit to destroying a large share of their own coinbase
reward if they produce a fork in their microblock chain. Destroying the value of
the coinbase is enforced by a covenant. Without this commitment, the blocks are
not accepted as valid Bitcoin-NG blocks.

Poison Structure Bitcoin-NG’s coinbase transactions need a time frame in which
they are unspendable by the miner, but destroyable by a poison transaction. In
Bitcoin, a consensus rule enforces that normal coinbase outputs can be spent after
100 confirmations [3]. Bitcoin-NG’s coinbase transactions must therefore delay
the ability to spend the coinbase output by an additional number of blocks t. We
implement this using CLTV:

12 Malte Möser, Ittay Eyal, and Emin Gün Sirer

If

<height +100+t> CheckLockTimeVerify <pkLeader > CheckSig

Else

<90% of value> <Return > CheckOutputVerify

<10% of value> 0 CheckOutputVerify

<pkPoison > CheckSig

EndIf

Within these t blocks a poison transaction can destroy a significant share of
the coinbase’s value and reward the reporting user with the remainder of the
funds. This mechanism is enforced by a covenant that ensures that most of the
value is destroyed in an unspendable Return output and the rest of the funds
can be claimed by the user reporting the misbehavior, who can choose her own
output script program.

Fraud Detection The crux of the fraud detection mechanism is to construct every
microblock such that if the leader creates a fork with more than one microblock
succeeding any block it is possible to extract the private poison key.

To achieve this, we use a property of the ECDSA signature scheme used for
Bitcoin transaction signing. Each ECDSA signature created with a secret key d

requires the signer to select an ephemeral key k, that is, a secret random number
used in the signing process. This ephemeral key must not be reused with the
same private key to sign another message as this allows to calculate d from the
two signatures [18]. In fact, such operational security mistakes have led to theft
of bitcoins [5].

Every ECDSA signature contains a value r that is computed based on k and
otherwise fixed parameters. Computing k from r is believed to computationally
infeasible [18]. We utilize this fact as follows.

Each key-block and microblock are published with a bundled value r, thereby
committing to a certain ephemeral key for the next microblock. Each microblock
is signed with the leader’s poison key using the ephemeral key previously selected;
if the r value of a microblock does not match the commitment in the previous
block, it is considered invalid.

If the leader creates a microblock fork, she is forced to reuse the ephemeral
key to sign the microblocks. This allows any party with access to both messages
to calculate the private poison key. The leader can only profit from such forking
by making one microblock public, as part of the main chain, and one microblock
known to some defrauded party. Once this defrauded party learns about the fork,
she can find the poison private key and expose the fraud.

Note that we use two different keys in the scheme as the leaked key should
only enable the poison mechanism, but not to be useful to produce arbitrary
microblocks on behalf of the leader.

6 Related Work

Covenants The first mention of covenants in Bitcoin is due to Maxwell [22],
who coined the term. Maxwell proposed using zero-knowledge succinct non-

Bitcoin Covenants 13

interactive arguments of knowledge (SNARKs) to place, and discharge, arbitrarily
complicated constraints on any data in the blockchain. However, even assuming
SNARKs can be implemented efficiently, the generality of this approach makes
it difficult to reason about the system’s security. Consequently, this idea was
immediately dismissed by Maxwell himself. Ethereum [7] is a blockchain-based
protocol that provides a Turing-complete programming language for writing
arbitrary programs. The power of the scripts is limited in Ethereum through utility
pricing to limit malicious use and to maintain fairness. While the programming
language is universally expressive and can thus implement covenants, it offers no
formal security guarantees. In contrast, the covenants implementation we propose
requires only limited changes to Bitcoin’s limited script language, accesses only
designated outputs, and incurs nominal overhead.

Further discussion on the concept of covenants [2] focuses mostly on risks,
such as potential impact on fungibility and the possibility to use covenants
to enforce anti-money laundering (AML) regulation upon Bitcoin. Covenants
do not necessarily impact fungibility if programmed properly, and it is the
responsibility of the covenant programmer to lift a covenant when it makes sense
to do so. In general, most general-purpose extensions, including the presence
of unconfirmed transactions [13] as well as extensions such as CLTV, can pose
problems for fungibility if not properly used. Overall, the political consequences
of general-purpose technical features are beyond the scope of this paper.

Vault transactions In [10], a Bitcoin forum participant outlines a 4-line proposal
to deter theft using restrictions on expenditures. This scheme uses a recursive
covenant that allows the owner of funds to abort a theft transaction within
a bounded time, and send the funds to a new output, secured by a different
private key. While this scheme may be useful in certain scenarios, in essence,
it simply secures the funds by an additional key. Multisignature transactions,
which require m out of n keys to be used to sign a valid transaction, provide
similar protections. Eskandari et al. [15] evaluate the usability of different key
management schemes, and conclude that there is no silver bullet for private
key storage. And while others have suggested more efficient threshold signature
schemes based on ECDSA [17], with better privacy and smaller transaction size
in comparison to standard multisignature transactions, these schemes all rely on
the secrecy of the signing keys. In contrast, vaults prohibit a thief from taking
possession of the funds even if she learns all the secret keys.

Fraud proof Fraud-proofs have gained attention with the introduction of cryp-
tocurrencies due to the ability to use them against a security deposit. Fraud proofs
similar to the one we use were suggested in the context of generic covenants by
d’aniel and Todd [12]. Other instances are in the context of pegged sidechains [1],
and proof-of-stake [8]. Ruffing, Kate, and Schröder [24] propose a general scheme
for double-attestation proof, using a cryptocurrency as a primitive.

14 Malte Möser, Ittay Eyal, and Emin Gün Sirer

7 Conclusions

We showed how Bitcoin covenants can be added to the existing scripting language
with a single simple opcode with nominal overhead. Overall, covenants introduce
a novel functionality that opens the door to a wide range of security constructs
and financial contracts. We demonstrate this with two novel and useful constructs.

The first, vault transactions, tackles cryptocurrency key security. Vault trans-
actions significantly reduce theft in Bitcoin by removing the ability of a thief to
keep the proceeds.

The second, poison transactions, enable automatic fraud-proof-based penaliz-
ing, a generally useful construct. We showed how covenant-enabled fraud-proofs
can be used to progressively deploy Bitcoin-NG as an overlay on top of the
Bitcoin blockchain, thereby enabling significant improvements in throughput,
confirmation time and scalability.

Acknowledgments The authors thank Glenn Willen for useful conversations, Tim
Ruffing and Dominique Schröder for their advice on cryptographic primitives,
and the anonymous reviewers for their valuable feedback.

The first author was supported by a fellowship within the FITweltweit pro-
gramme of the German Academic Exchange Service (DAAD) as well as the
German Bundeministerium für Bildung und Forschung (BMBF) under grant
agreement No. 13N13505.

Bibliography

[1] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille.
Enabling Blockchain Innovations with Pegged Sidechains. url: https:
//blockstream.com/sidechains.pdf (visited on 2015-11-03).

[2] #Bitcoin-Wizard IRC log. url: https://download.wpsoftware.net/
bitcoin/wizards/2014/01/14-01-15.log (visited on 2015-10-28).

[3] Block chain. url: https://en.bitcoin.it/w/index.php?title=Block_
chain&oldid=59033 (visited on 2015-10-19).

[4] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua
A. Kroll, and Edward W. Felten. “Research Perspectives on Bitcoin and
Second-Generation Cryptocurrencies”. In: IEEE Symposium on Security
and Privacy. San Jose: IEEE, 2015.

[5] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore,
Michael Naehrig, and Eric Wustrow. “Elliptic Curve Cryptography in Prac-
tice”. In: Financial Cryptography and Data Security. Vol. 8437. Barbados:
Springer Berlin Heidelberg, 2014, pp. 157–175.

[6] BtcDrak, Mark Friedenbach, and Eric Lombrozo. BIP 112: CHECKSE-
QUENCEVERIFY. 2015. url: https://github.com/bitcoin/bips/
blob/master/bip-0112.mediawiki (visited on 2015-10-08).

https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://download.wpsoftware.net/bitcoin/wizards/2014/01/14-01-15.log
https://download.wpsoftware.net/bitcoin/wizards/2014/01/14-01-15.log
https://en.bitcoin.it/w/index.php?title=Block_chain&oldid=59033
https://en.bitcoin.it/w/index.php?title=Block_chain&oldid=59033
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

Bitcoin Covenants 15

[7] Vitalik Buterin. A Next Generation Smart Contract & Decentralized Appli-
cation Platform. https://www.ethereum.org/pdfs/EthereumWhitePaper.
pdf/, retrieved Feb. 2015. 2013.

[8] Vitalik Buterin. Slasher: A Punitive Proof-of-Stake Algorithm. https:
//blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-

stake-algorithm/. January 2015.
[9] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic Cash”.

In: Advances in Cryptology — CRYPTO’ 88. Ed. by Shafi Goldwasser.
Vol. 403. Lecture Notes in Computer Science. New York: Springer, 1990,
pp. 319–327.

[10] coastermonger. Thief ’s downfall covenant. 2013. url: https://bitcointalk.
org/index.php?topic=278122.msg3164726#msg3164726 (visited on
2013-09-16).

[11] Colored Coins Project. Colored Coins. http://coloredcoins.org/, re-
trieved Sep. 2015.

[12] d’aniel and Peter Todd. Security deposits. 2013. url: https://bitcointalk.
org/index.php?topic=278122.msg2973895#msg2973895 (visited on
2013-08-20).

[13] Christian Decker. [bitcoin-dev] [BIP] Normalized transaction IDs. 2015. url:
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-

November/011657.html (visited on 2015-11-03).
[14] Dogecoin Project. Dogecoin. https://dogecoin.org, retrieved Nov. 2014.
[15] Shayan Eskandari, David Barrera, Elizabeth Stobert, and Jeremy Clark.

“A First Look at the Usability of Bitcoin Key Management”. In: NDSS
Workshop on Usable Security (USEC). 2015.

[16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse.
Bitcoin-NG: A Scalable Blockchain Protocol. 2015. arXiv: 1510.02037
[cs.CR]. url: http://arxiv.org/abs/1510.02037.

[17] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau,
Joshua A. Kroll, Edward W. Felten, and Arvind Narayanan. “Securing
Bitcoin Wallets Via a New DSA/ECDSA Threshold Signature Scheme”.
2015.

[18] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer New York, 2004.

[19] Stan Higgins. Bitstamp Claims $5 Million Lost in Hot Wallet Hack. 2015.
url: http://www.coindesk.com/bitstamp-claims-roughly-19000-
btc-lost-hot-wallet-hack/ (visited on 2015-10-16).

[20] List of Major Bitcoin Heists, Thefts, Hacks, Scams, and Losses. url: https:
//bitcointalk.org/index.php?topic=576337 (visited on 2015-10-16).

[21] Litecoin Project. Litecoin, open source P2P digital currency. https://
litecoin.org, retrieved Nov. 2014.

[22] Gregory Maxwell. CoinCovenants Using SCIP Signatures, an Amusingly
Bad Idea. 2013. url: https://bitcointalk.org/index.php?topic=
278122.0 (visited on 2015-10-25).

https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://bitcointalk.org/index.php?topic=278122.msg3164726#msg3164726
https://bitcointalk.org/index.php?topic=278122.msg3164726#msg3164726
http://coloredcoins.org/
https://bitcointalk.org/index.php?topic=278122.msg2973895#msg2973895
https://bitcointalk.org/index.php?topic=278122.msg2973895#msg2973895
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011657.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011657.html
https://dogecoin.org
http://arxiv.org/abs/1510.02037
http://arxiv.org/abs/1510.02037
http://arxiv.org/abs/1510.02037
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
https://bitcointalk.org/index.php?topic=576337
https://bitcointalk.org/index.php?topic=576337
https://litecoin.org
https://litecoin.org
https://bitcointalk.org/index.php?topic=278122.0
https://bitcointalk.org/index.php?topic=278122.0

16 Malte Möser, Ittay Eyal, and Emin Gün Sirer

[23] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http:
//www.bitcoin.org/bitcoin.pdf. 2008.

[24] Tim Ruffing, Aniket Kate, and Dominique Schröder. “Liar, Liar, Coins
on Fire! — Penalizing Equivocation By Loss of Bitcoins”. In: CCS’15.
Proceedings of the 22nd Conference on Computer and Communications
Security. (Denver, CO, USA). CCS’15. New York, NY, USA: ACM.

[25] Peter Todd. BIP 65: OP CHECKLOCKTIMEVERIFY. 2014. url: https:
//github.com/bitcoin/bips/blob/master/bip- 0065.mediawiki

(visited on 2015-10-08).
[26] Florian Tschorsch and Björn Scheuermann. Bitcoin and Beyond: A Techni-

cal Survey on Decentralized Digital Currencies. Cryptology ePrint Archive,
Report 2015/464. 2015.

[27] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gün Sirer. “Karma:
A Secure Economic Framework for Peer-to-Peer Resource Sharing”. In:
Workshop on the Economics of Peer-to-Peer Systems. Vol. 35. Berkeley,
California, 2003.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

	Bitcoin Covenants

