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Abstract—Many blockchain-based cryptocurrencies such as
Bitcoin and Ethereum use Nakamoto consensus protocol to
reach agreement on the blockchain state between a network
of participant nodes. The Nakamoto consensus protocol prob-
abilistically selects a leader via a mining process which rewards
network participants (or miners) to solve computational puzzles.
Finding solutions for such puzzles requires an enormous amount
of computation. Thus, miners often aggregate resources into
pools and share rewards amongst all pool members via pooled
mining protocol. Pooled mining helps reduce the variance of
miners’ payoffs significantly and is widely adopted in popular
cryptocurrencies. For example, as of this writing, more than 95%

of mining power in Bitcoin emanates from 10 mining pools.
Although pooled mining benefits miners, it severely degrades

decentralization, since a centralized pool manager administers
the pooling protocol. Furthermore, pooled mining increases the
transaction censorship significantly since pool managers decide
which transactions are included in blocks. Due to this widely
recognized threat, the Bitcoin community has proposed an
alternative called P2Pool which decentralizes the operations of
the pool manager. However, P2Pool is inefficient, increases the
variance of miners’ rewards, requires much more computation
and bandwidth from miners, and has not gained wide adoption.

In this work, we propose a new protocol design for a decentral-
ized mining pool. Our protocol called SMARTPOOL shows how
one can leverage smart contracts, which are autonomous agents
themselves running on decentralized blockchains, to decentralize
cryptocurrency mining. SMARTPOOL guarantees high security,
low reward’s variance for miners and is cost-efficient. We
implemented a prototype of SMARTPOOL as an Ethereum smart
contract working as a decentralized mining pool for Bitcoin. We
have deployed it on the Ethereum testnet and our experiments
confirm that SMARTPOOL is efficient and ready for practical
use.

I. INTRODUCTION

Bitcoin and emerging cryptocurrencies like Ethereum are

popular since they offer trustless platforms for users to transact

and run decentralized applications. For example, unlike tradi-

tional centralized systems, Bitcoin lacks a central authority to

issue fiat currency. Instead, Bitcoin maintains a peer-to-peer

distributed ledger of prior transactions that demonstrates who

owns what. Network participants run a consensus protocol

namely Nakamoto consensus to agree on the state of the

ledger [1]. In every epoch, Nakamoto consensus probabilisti-

cally selects a leader which demonstrates a solution to a com-

putational puzzle (or a “proof-of-work” puzzle) [1]. The leader

broadcasts a “block”, which includes set of new transactions

to be appended to the ledger. If such a block satisfies several

predefined validity conditions, such as not having any double

spending transactions, all network participants will update

their ledger with the new transaction block and the protocol

moves on to the next epoch. The leader (or block finder)

receives a block reward which includes block subsidy (12.5

Bitcoin, or 9, 000 USD at present) and fees of all included

transactions.

Problem. Nakamoto-based cryptocurrencies, such as Bitcoin

and Ethereum, utilize massive computational resources for

their mining. Finding a valid solution to a proof-of-work is

a probabilistic process, whereby miners with modest compu-

tational power can have extremely high variance. A desktop

CPU would mine 1 Bitcoin block in over a thousand years,

for instance. To reduce variance, miners join mining pools

to mine blocks and share reward together. In a mining pool,

a designated pool operator is responsible for distributing

computation tasks to miners which have moderate difficulty,

much lower than difficulty in solving the full PoW puzzle for

a block. Each solution to the task has a probability of yielding

a solution to the full PoW block puzzle — so if enough

miners solve tasks, then some of these solutions are likely to

yield blocks. When a miner’s submitted solution yields a valid

block, the pool operator submits it to the network and obtains

the block reward. The reward is fairly divided among all pool

members proportional to their contributed computation power.

The problem, though, is that the pool operator is centralized

(which maybe running on centralized infrastructure), and the

pool operator is in control of massive computational power of

its participants. At the time of writing, at least 95% of the

current computing power of the Bitcoin network is from 10
mining pools, making the Bitcoin network highly centralized.

Previous works also show that Bitcoin is not as decentralized

as it was designed to be [2], [3].

By design, cryptocurrencies distribute network moderation

over trustless, decentralized populations. The security of such

distributed systems relies on the assumption that the majority

of participants do not cheat. The common practice of pooled

mining undermines this security assumption by delegating

network moderation power to centralized authorities, called

pool operators, who then posses undue network influence.

Several times a single mining pool has commandeered more
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than half of a cryptocurrency’s hash rate (e.g., DwaftPool 1

in Ethereum and GHash.io 2 in Bitcoin), and in such cases

only the pool operator’s goodwill prevented the operator from

perpetrating a 51% attack against the entire network. Further,

mining pools currently can dictate which transactions get

included in the blockchain, thus increasing the threat of trans-

action censorship significantly [4]. Although some Bitcoin

pools allow miners to choose their own transactions (still with

some rules enforced by the pools) via the getblocktemplate

protocol [5], the vast majority of mining power (i.e., more

than 80%) in Bitcoin cannot propose their own transactions 3.

Things are worse in the Ethereum cryptocurrency where it is

not even technically possible yet for centralized pools to allow

miners to include their own transaction sets. Thus, centralized

pools not only decrease decentralization, but also make cryp-

tocurrencies more vulnerable to transaction censorship. For

example, recently Ethereum network encountered many empty

blocks (i.e., blocks which do not include any transactions).

Perhaps the 5 largest pools wanted to broadcast their blocks

faster in order to earn more rewards 4.

Solution. In this work, we design a new decentralized pooled

mining protocol for existing cryptocurrencies like Bitcoin and

Ethereum using smart contracts. Smart contracts, introduced

in 1994 by Szabo [6] and realized in the Ethereum [7]

crytpocurrency in 2015, are uncensorable programs that live

on Ethereum’s blockchain and have their own executable code

and internal states, including storage for variable values, and

ether currency balance. Smart contracts are executed on a

blockchain using a consensus protocol. The smart contract’s

code, its input and output are all agreed between all the

network participants by the consensus protocol in the under-

lying blockchain. Thus, all network participants agree on the

updated state after each time the contract is triggered.

We use Ethereum smart contracts to build a decentralized

pooled mining protocol for Bitcoin called SMARTPOOL. Our

solution implicitly replaces the centralized pool operator by

network participants who run the Ethereum network. Thus, our

work shows how we can leverage one expressive cryptocur-

rency network to build pooled mining for another. In concept,

one could build a pooled mining protocol for Ethereum that

runs on Ethereum itself — however, we restrict our study

here to support pooled mining for Bitcoin as a representative

of many Nakamoto- based cryptocurrencies. Applying our

solution to support Ethereum is somewhat straightforward as

we discuss in Appendix B. SMARTPOOL does not directly

make centralized pooled mining in Bitcoin impossible, nor

does SMARTPOOL disincentivize it (as done in Miller et

al. [8]). SMARTPOOL simply offers a practical alternative to

miners to move away from centralized pools without degrading

any functionality, usability or security. SMARTPOOL takes

1https://forum.ethereum.org/discussion/5244/dwarfpool-is-now-50-5
2https://www.cryptocoinsnews.com/warning-ghash-io-nearing-51-leave-

pool/
3See GBT column in https://en.bitcoin.it/wiki/Comparison of mining

pools. In this url, BTCC and Eligius are the only two major pools which
support getblocktemplate.

4https://www.reddit.com/r/ethereum/comments/57c1yn/why dwarfpool
mines mostly empty blocks and only/

no cuts or fees 5, unlike centralized pools, and disburses all

Bitcoin block rewards to pool participants in their entirety.

Most importantly, SMARTPOOL allows miners to freely select

which transaction set they want to include in a block. Thus,

SMARTPOOL makes cryptocurrencies much more censorship-

resistant.

Technical Challenges. While previous efforts towards P2P

pools have been proposed, they have suffered from technical

drawbacks and have not gained adoption [9]. In designing

SMARTPOOL, we have overcome several of these practical

challenges (see Section III-B for details). First,everyone must

agree on who contributes what to the pool without any cen-

tralized operator. Second, the protocol needs to guarantee that

no one is able to cheat, or over-claim their contribution to the

pool. Finally, SMARTPOOL needs to guarantee feasible costs

(e.g., bandwidth and messages used) for processing millions of

task solutions for each Bitcoin block. SMARTPOOL’s operating

costs on Ethereum must be low enough to incentivize miners

to join.

SMARTPOOL includes several novel data structures and

design choices which make its protocol secure and efficient.

Specifically, we devise a new mechanism to verify and record

miners’ contributions to the pool without centralized operators.

SMARTPOOL’s efficient probabilistic verification drastically

reduces both the number of messages and the costs to run

the pool for miners. Using a novel data structure called the

augmented Merkle tree, SMARTPOOL’s batched share submis-

sion and efficient payment scheme can detect and efficiently

discourage cheating in the pool. In order to evaluate our

design, we implemented a prototype of SMARTPOOL and

deployed it on Ethereum’s testnet. We measured the costs

for Bitcoin miners when submitting their contributions to the

pool. Our experiments show that these operating costs are

negligible compared to projected income from block rewards

(e.g., less than 1% of net) for both Bitcoin and Ethereum.

Furthermore, each miner only has to broadcast a few messages

per day to SMARTPOOL. Finally, like centralized mining

pools, SMARTPOOL offers the advantage of low variance

payouts.

Previous works have proposed different applications of

smart contracts, ranging from outsourced computation [10],

smart contracts for criminal activities [11] to a decentralized

venture fund [12]. Here we propose the a new use case of

smart contracts, which decentralizes the pooled mining process

of cryptocurrencies and directly strengthens the underlying

security of the network. The security of smart contract systems

— protection against history-revision, public (or open) execu-

tion, and integrity-protected computation — directly benefits

SMARTPOOL. With SMARTPOOL, we demonstrate that it is

feasible to build new cryptocurrencies where the “pooled

mining” (or SMARTPOOL) is baked into its scripting logic,

thereby making solo-mining as incentivized as pooled mining.

In the long run, we hope SMARTPOOL obviates the need

for centralized pooled mining, which has posed several kinds

of threats to pool members in cryptocurrencies [13], [14].

5The caveat here is that Bitcoin miners will pay in Ether gas to execute
SMARTPOOL distributively

https://forum.ethereum.org/discussion/5244 /dwarfpool-is-now-50-5
https://www.cryptocoinsnews.com/warning-ghash-io- nearing-51-leave-pool/
https://www.cryptocoinsnews.com/warning-ghash-io- nearing-51-leave-pool/
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
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In the short run, we hope SMARTPOOL will offer a direct

competition to centralized pools as it takes almost “no cuts”

and distributes a greater share of block rewards to miners.

Contributions. This paper makes the following contributions.

• We introduce a new and efficient decentralized pooled

mining protocol for cryptocurrencies. Our protocol

SMARTPOOL leverages smart contracts in existing cryp-

tocurrencies, coupling with our data structures and effi-

cient verification mechanism, provides security and effi-

ciency to miners.

• We implemented a prototype smart contract of SMART-

POOL which run as a decentralized Bitcoin mining

pool. Our experiments with our deployed contract in

the Ethereum testnet demonstrate that SMARTPOOL is

practical and efficient.

• We discuss how to use SMARTPOOL to build a new line

of cryptocurrencies where mining is fully decentralized,

thus avoid threats related to centralized mining pools.

II. BACKGROUND

We give a brief introduction to mining and pooled mining

in cryptocurrency. We then provide background on smart

contracts and their execution model.

A. Pooled mining

Mining. In cryptocurrencies like Bitcoin and Ethereum, the

history of transactions between users is stored in a public

ledger namely blockchain which has a special data structure:

one block of transactions after another. In order to agree on the

state of the ledger, the network participants run a consensus

protocol, namely Nakamoto consensus, between themselves

to periodically and probabilistically elect a new leader among

them. The elected leader then proposes a new block which

includes a set of new transactions to modify the state of

the ledger. Such election is done via the mining process,

where network participants (or miners) are asked to solve

computationally hard puzzles (or proof-of-work puzzles) [1],

[15], [16]. The miners who find the solutions for the puzzles

first are rewarded with newly minted Bitcoin to incentivize

them to keep solving next puzzles and strengthen the network.

Typically, Bitcoin miners compete to search for a nonce

value that makes the following condition satisfied

H(PrevBlock || NewTXSet || nonce) ≤ D (1)

in which H is some preimage-resistant cryptographic hash

function (e.g., SHA-256), NewTXSet represents the new set

of transactions that the miner wants to include to the ledger

and D is a global parameter which determines how hard it is

to solve the puzzle on average. For example, as of this writing,

D in the Bitcoin network is set so that the valid hash must

have at least 80 leading zeros. The expected amount of SHA-

256 hashes to find a valid hash is 280. One can easily compute

that a normal Desktop CPU which can do a million SHA-256

hashes per second would take tens of thousands of years to

find a valid nonce.

1contract Ownership{

2 address public owner;

3 uint public price;

4
5 function Ownership(uint256 _price){

6 price = _price;

7 owner = msg.sender;

8 }

9
10 function buy(uint nextPrice){

11 if (msg.value >= price){ //send enough money;

12 owner.send(price);

13 msg.sender.send(msg.value-price);

14 price=nextPrice;

15 owner=msg.sender;

16 }

17 else

18 thow;

19}}

Figure 1: A contract that allow users to purchase its ownership.

Pooled Mining. Finding solutions for PoW puzzles in Bitcoin

or Ethereum is probabilistic and requires enormous resources.

Thus, miners who solve the puzzles separately (or solo-miners)

would have to wait for long time to receive their first reward.

Worse, solo-miners with limited computation power will suffer

from very high variance in their payoffs. To sidestep this prob-

lem, miners combine their power to solve the PoW puzzles

together and split the reward according to each’s contribution.

This approach is called pooled mining in which miners are

asked to solve much easier pool-puzzles. Specifically, each

pool-puzzle requires pool miners to find nonce so that the

hash satisfies some smaller difficulty d. A solution for a pool-

puzzle is called a share which has some probability of being a

valid solution for the main PoW puzzle. For example, d may

be set so that each share must have at least 50 leading zeros,

hence a share has a probability 2−30 of being a valid block.

Once a miner in the pool finds a valid block, the reward

(12.5 Bitcoin and transaction fees, as of this writing) is split

between all pool miners proportional to their contributions,

which are measured based on the number of shares they have

submitted [14]. The pooled mining protocol guarantees that

the miner cannot claim the reward of the block to himself or

any other miners.

B. Smart Contracts in Ethereum

Smart contract. A smart contract (or contract for short)

is a special account on the Ethereum blockchain. A normal

account would have its address and the balance (in Ether).

However, a smart contract, in addition, has its code and its

private persistent storage (e.g., a mapping between variables

and values). The contract’s code is akin to normal program,

in which the program manipulates its variables. To invoke a

contract (e.g., execute its code) at address α, users send a

transaction to α with appropriate payload, i.e., payment for the

execution (in Ether) and/ or input data for the invocation. Each

invocation starts execution in a contract state σ and results in

a new state σ′ of the contract.

A simple example of a contract is in Figure 1 which

allows users to pay to existing owner of the contract and

become the next owner. After initialization, any user in the
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Ethereum network can just send the required amount of Ether

to the contract and claim the ownership of the contract. The

execution of the contract is guaranteed to be correct (i.e.,

always get the ownership after paying enough Ether) as long

as a majority of the miners in Ethereum are honest.

Gas system. In order to compensate the miners for executing

smart contracts, each operation in Ethereum smart contract

costs some specific gas amount, which can be directly con-

verted to Ether. However, careful readers may notice that a

well-financed adversary can ask the miners to compute ex-

pensive computation in some smart contract, thus conducting

DoS attack to the whole network [10]. In Ethereum, there

is gas limit value in each block which dictates how much

computation one can ask the network to compute in the block.

Although this gas limit prevents the Dos attack on the miners,

it rules out running several computation-intensive applications

on the Ethereum blockchain.

III. PROBLEM AND CHALLENGES

A. Problem Definition

In this work we consider the problem of building an efficient

decentralized pooled mining protocol for cryptocurrencies.

Such a protocol must satisfy the following ideal properties.

• Decentralization. There is no centralized operator who

manages the pool. The pool is collectively maintained

and run by all miners in the network. There is also

no requirement for joining the pool, i.e., anyone with

sufficient mining power can freely participate in and

contribute to the pool.

• Efficiency. The pool should give miners the same reward

and guarantee low variance as if they were mining with

centralized pools. Further, the number of messages, the

amount of bandwidth, local computation and other costs

consumed by miners must be reasonably small.

• Security. The pool protocol protects miners from attackers

who might steal rewards or prevent others from entering

the pool.

• Fairness. Miners receive rewards in proportion to their

share contributions to the pool. Big miners and small

miners are treated equally.

Threat model and security assumptions. Cryptocurrencies

like Bitcoin and Ethereum allow users to use pseudo anony-

mous identities in the network. Users do not have any inherent

identities and there is no PKI in the network. Here we do not

violate any of these properties in our solutions.
We consider a threat model where miners are rational,

which means they can deviate arbitrarily from the honest pro-

tocol to gain more reward. An alternative is a malicious model

where the attacker does anything just to harm other miners. In

this work we are not interested in the malicious model here

since i) such sustained attacks in cryptocurrencies often require

huge capital, and ii) existing centralized pools are not secure

in such a model either [13], [17], [18]. We also assume that

the adversary controls less than 50% of the computation power

in the network. This assumption guarantees that the consensus

protocols in Bitcoin and Ethereum networks perform correctly.

On the other hand, we do not make any assumption on the

centralization or trusted setup in our solution apart from what

have been made in existing cryptocurrencies 6.

B. Challenges and Existing Solutions

Challenges. There are several security and performance chal-

lenges in building a decentralized mining pool.

• C1. First, pool miners must agree on how much each

miner contributes to the pool. This essentially requires

running a consensus protocol among all miners in the

pool on top of Bitcoin’s underlying consensus proto-

col. However, running an additional consensus protocol

between pool miners makes the security of the pool

dependent on how much computation power the pool

has (i.e., how well the pool is adopted). Specifically, any

adversary who controls more than half of the computation

power in the pool is able to subvert the consensus protocol

in the pool.

• C2. In decentralized mining pools, messages exchanged

between miners in the pool are in plaintext, thus any

network adversary can observe other miners’ shares and

either steal or resubmit the shares. This challenge does

not exist in centralized pools where miners can establish

secure and private connections to the pool, thus one can-

not know when and which shares a miner submits to the

pool. In decentralized settings, such secure connections

are not immediate since i) there is no centralized operator

who can initiate secure connections to miners, and ii)

there is no PKI between miners in the pool. Thus, a good

design for a mining pool must prevent the adversary from

stealing others’ shares. Similarly, the pool should prevent

miners from over-claiming their contribution by either re-

submitting previous shares or submitting invalid shares.

Centralized pools can efficiently guarantee this since the

pool manager can check every submission from miners.

• C3. The number of shares in the pool may be too

large, thus increasing the number of messages exchanged

between miners in the pool. For example, let us consider

the scenario when there are 1, 000, 000 shares on average

to get a valid block. A naı̈ve solution may require miners

to create 1, 000, 000 messages and broadcast to other

miners in the pool to submit their shares. With the current

capacity of existing agreement protocols in open and

decentralized environments, no network can process that

many messages within the course of a few minutes [19],

[20]. On the other hand, reducing the number of shares

per block by increasing the share difficulty will increase

the variance in reward for miners, thus damaging the

sole advantage of pooled mining. Figure 2 demonstrates

how adjusting the difficulty of shares affects the variance

of miners’ reward and the amount of resource (both

bandwidth and computation) consumed per miner in a

decentralized pool.

6Cryptocurrencies like Bitcoin and Ethereum have the trusted setup where
the first block in these networks are constructed and provided by Satoshi
Nakamoto (for Bitcoin) and Ethereum Foundation (for Ethereum).



5

5 · 105 1 · 106 1.5 · 106 2 · 106 2.5 · 106
0

0.2

0.4

0.6

Difficulty

P
ro

b
ab

il
it

y
o
f

fi
n
d
in

g
a

sh
ar

e

0

5 · 105

1 · 106

1.5 · 106

2 · 106

2.5 · 106

N
o
.

o
f

m
es

sa
g
es

Pr[Finding a share in a day]
No. of messages

Figure 2: The relationship between the share’s difficulty and

i) the probability of find a share within a day (black line) as

per [14]; ii) resource (i.e., number of messages) consumed

by a miner (dashed line); in a decentralized mining pool

(e.g., P2POOL).

Existing solutions. The most prominent pooled mining pro-

tocol is a centralized one, where there exists a pool manager

who distributes the work to miners, records how much work

they have submitted and splits the reward proportionally. Apart

from operating in centralized environments and increasing the

threat of transaction censorship, other disadvantage of this

model is that the pool managers either charge miners some

fee, or take all transaction fees included in the block for profit

and/ or to compensate for the cost of running the pool. Thus,

miners often receive less reward than they should.

P2POOL is the first and only attempt we are aware of which

decentralizes pooled mining [9]. At a high level, P2POOL

solves the agreement problem (i.e., challenge C1) by running

an additional Nakamoto Consensus protocol to build a share-

chain between all miners in the pool. The share-chain includes

all shares submitted to the pool, one after another (just like

the normal Bitcoin blockchain, but each block is a share). To

guarantee that every share is submitted and credited once (i.e.,

challenge C2), P2POOL leverages the coinbase transaction (a

special transaction in a block which pays the block reward

to miners, discussed more in Section IV-B). Specifically, a

share is valid and belongs to P2POOL and a) it extends the

latest share in the share-chain; b) it satisfies some predefined

difficulty; c) it pays the rewards to miners correctly based on

the state of the share-chain.

P2POOL satisfies almost all ideal properties of a decen-

tralized pool (defined in Section III-A) but the efficiency

and security properties. Specifically, P2POOL does not solve

challenge C3 since the number of messages exchanged be-

tween miners in P2POOL is linearly dependent on the number

of shares in the pool. If it were easy to find a share in

P2POOL, the number of messages to be broadcast would

increase and miners would need to spend much more resources

(e.g., bandwidth, local computation) to download, verify all the

shares from others (see Figure 2). Thus, P2POOL requires high

share difficulty in order to reduce the number of transmitted

messages. Therefore, often miners get much higher variance of

their reward than mining with centralized pools. As discussed

in previous work [14], high variance in the reward (i.e., the

supply of money) decreases miners’ utility, makes it harder for

miners to predict their income and verify that their systems

are working correctly. As a result, as of writing, P2POOL

attracts only few miners and controls a negligible fraction of

the mining power in the Bitcoin network (the last block mined

by P2POOL was almost a month ago [9]).
In addition, P2POOL, although being decentralized, does

not provide much security guarantee because of challenge C1.

The security of the share-chain in the pool depends on how

much computation power in the pool (i.e., just like the security

of Bitcoin blockchain). As of writing, P2POOL accounts for

less than 0.1% of the Bitcoin mining power, thus all miners in

P2POOL are vulnerable to any adversary who controls even

only 0.1% of the mining power in the network. Hence, it is

arguable if miners in P2POOL enjoy better security guarantee

than miners in centralized pools.

C. Our Solution

Our solution for a decentralized pooled mining leverages

Ethereum smart contracts which are decentralized autonomous

agents running on the blockchain itself. At a high level,

we replace the pool manager by a smart contract, which

is collectively maintained and run by miners in Ethereum

network. The smart contract acts like the bookkeeper for the

pool, by storing all shares submitted by miners. When a new

share is submitted, the contract verifies the validity of the

share, checks that no previous record of the share exists, and

then updates the corresponding miner’s record. We borrow

a technique from P2POOL which allows miners to locally

generate the block template of the pool based on the state

of the contract (discussed more in Section IV-B). If a miner

finds a share which is a valid block, it will broadcast the block

to the Bitcoin network and submit the block header to the pool

to update the miners’ records. Our protocol guarantees that the

reward for the block is distributed fairly to other miners in the

pool.
Apart from the challenges described in Section III-B, there

are additional challenges in building such a smart contract for

a mining pool. We illustrate them by considering a straw-man

solution in Figure 3 which implements P2POOL in a smart

contract. The solution works by having a smart contract which

receives all the shares submitted by miners, verifies each of

them and records how many shares one has submitted. The

contract has a designated address so that miners in the pool

can send the block reward to the address (i.e., in the “coinbase”

transaction, which pays the newly minted coins as the block

reward to miners). A share is valid if it uses only the contract

address as the output address in the coinbase transaction and

satisfies the predefined difficulty (e.g., Line 7). This guarantees

that the pool will receive the reward of the block mined by pool

miners. On every share submission, the pool verifies the share

and updates the contribution statistics of the pool members

(Line 14). If a miner finds a valid block, the smart contract

distributes the reward to miners in the pool proportional to

their contribution so far, based merely on the amounts of shares

they submit (Line 17). A solution like the one in Figure 3, apart

from C1, C2, C3, has the following additional challenges.
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1contract StrawmanPool{

2 mapping (uint256 => boolean) mSubmittedShares;

3 mapping (uint256 => int) mContribution;

4
5 function submitShare(someShare) returns (boolean){

6 // check validity

7 if !isValid(someShare)

8 return false;

9 // check if the share has been submitted

10 if mSubmittedShares[someShare.hash]

11 return false;

12 mSubmittedShares[someShare.hash] = true;

13 // update miner’s contribution

14 mContribution[msg.owner] += 1;

15 // distribute reward if is a valid block

16 if isValidBlock(someShare)

17 distributeReward(mContribution);

18 return true;

19 }

20}

Figure 3: Pseudo-code of a straw-man solution which imple-

ments a mining pool in a smart contract

• C4. A valid share earns miners a small amount of reward,

but miners may have to pay much more for fee (in Ether,

the underlying currency of Ethereum) when submitting

their shares to the pool. This fee is to compensate for

any storage and computation required when verifying the

share and update the contract state (see Section II). Thus,

a poor design of the pool’s like in Figure 3 may render

negative incomes for miners when the fee paid to submit

a share outweighs the reward earned by the share itself.

• C5. A smart contract in Ethereum running a Bitcoin min-

ing pool must guarantee correct payments on Bitcoin’a

network. This is tricky because Bitcoin miners expect to

receive rewards in Bitcoin, but Ethereum contracts can

only send and receive Ether.

Next, we briefly describe how we address these challenges

to achieve several ideal properties in SMARTPOOL.

• SMARTPOOL guarantees the decentralization property by

implementing the pool as a smart contract. Like any

smart contract, SMARTPOOL is operated by all miners

in the Ethereum network, yet SMARTPOOL can be used

to secure different network (e.g., Bitcoin) or even the

underlying network (e.g., Ethereum) itself. SMARTPOOL

relies on the consensus protocol running in Ethereum

network to allow miners to agree on the state of the

pool (i.e., challenge C1). In addition, SMARTPOOL’s

security depends directly on the underlying network (i.e.,

Ethereum) which runs the pool, not on how well the pool

is adopted.

• SMARTPOOL’s efficiency comes from allowing miners to

claim their shares in batches, e.g., one transaction to the

SMARTPOOL contract can claim, say, 1 million shares.

Furthermore, miners do not have to submit data of all

shares but only a few for the verification purpose, hence

the transaction fee per share is negligible. As a result, the

number of transactions required to send to SMARTPOOL

is 5 – 6 orders of magnitude less than the number of

shares (i.e., the number of messages in P2POOL.)

• We propose a novel and efficient probabilistic method for

verifying share submission from miners. Our probabilistic

verification, coupling with a simple but powerful payoff

scheme, allows us to achieve the same outcome as run-

ning a full verification for each submission. Specifically,

we guarantee that miners will receive their expected

reward based on their contributions even when other

miners turn malicious and submit invalid shares. This

immediately guarantees fairness.

• We devise a novel data structure to prevent miners

from submitting duplicated shares or resubmitting shares

in different batches. We achieve this fairness property

without requiring miners to communicate the bulk of their

submitted shares data.

• SMARTPOOL employs similar techniques from P2POOL

for checking which shares are valid and belong to the pool

before paying the miners for the shares. These techniques

also guarantee that miners cannot steal others’ shares,

and that they can mine directly in their target currency

(i.e., Bitcoin) without trusting a third party to proxy the

payment. Nevertheless, miners still need to acquire ether

to pay for the gas when they send transactions to claim

their shares to the pool. Such costs are less than 1%
of miners’ reward as we show in our experiments with

SMARTPOOL’s deployment in Ethereum testnet.

IV. DESIGN

In this section, we detail the design of SMARTPOOL.

SMARTPOOL’s design can be used to implement a decentral-

ized mining pool for many existing target cryptocurrencies,

but for clarity of exposition we fix Bitcoin as the target. We

remark that one could build a cryptocurrency with completely

decentralized by employing SMARTPOOL as the unique min-

ing protocol in that system.

A. Overview of SMARTPOOL

SMARTPOOL is a smart contract which implements a de-

centralized mining pool for Bitcoin, running on the Ethereum

network. SMARTPOOL maintains two main lists in its contract

state — a claim list claimList and a verified claim list

verClaimList. When a miner submits a set of shares as claim

for the current Bitcoin block, it is added to the claimList.

Each claim specifies the number of shares the miner is

claiming to have found, and it has a particular structure

that aids verification. SMARTPOOL then verifies the validity

of the claim, and once verified, it moves it to the verified

share list (denoted as verClaimList). As discussed later in

Section IV-B, each claim allows miners to submit a batch of

(say, 1 million) shares. Submitted claims include sufficient

meta-data for the verification purpose.

In Section IV-C we will discuss our verification protocol,

a key contribution of this work which enables efficiency.

The goal of the verification process is to prevent miners

from both submitting invalid shares and over-claiming the

number of shares they have found. SMARTPOOL pay claimants

proportional to the number of shares claimed, only if the
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Field Size

(bytes)
Name Data type

4 version int32 t

32 prevBlock char[32]

32 TxMerkleRoot char[32]

4 timestamp uint32 t

4 bits uint32 t

4 nonce uint32 t

Table I: Header of a Bitcoin block. This is also used as the

header for shares in pooled mining.

verification succeeds, otherwise nothing. The key guarantee

here is that of fairness — SMARTPOOL does not advantage

miners who cheat by claiming invalid or excessive shares. If

miners are rational, their payoff from cheating is the same or

worse than that as honestly reporting their shares.

In order to generate valid shares, miners query the

verClaimList in the contract which records the contributed

shares by different miners to date. Thus, if a miner finds

a fraction f of the shares in SMARTPOOL, he gets paid

proportional to f in the reward that SMARTPOOL’s miners get.

Further, to enable efficient verification checks, SMARTPOOL

forces miners to search for blocks with a particular structure

and dictates a particular template for claim submissions,

which we discuss in Section IV-B. Unlike P2POOL, miners

in SMARTPOOL do not have to run any additional consensus

protocol to agree on the state of the SMARTPOOL. Instead,

miners rely on the underlying Ethereum network in which

SMARTPOOL is deployed to maintain the consistent state

information of the pool.

B. Claim Submissions

Miners can submit a large batch of shares in a single claim.

To permit this, SMARTPOOL defines a Claim structure which

consists of a few pieces of data. First, the miner crypto-

graphically commits to the set of shares he is claiming. The

cryptographic commitment goes via a specific data structure

we call a augmented Merkle tree, as discussed in Section IV-D.

The Merkle root of this data structure is a single cryptographic

hash representing all the shares claimed and is included in the

Claim as a field called ShareAugMT.

After a miner claims several shares in a batch, SMARTPOOL

requires the miner to submit proofs to demonstrate that the

shares included in the claim are valid. For each claimed

share being examined, SMARTPOOL defines a ShareProof

structure to help validate the share. First, SMARTPOOL re-

quires a Merkle proof, denoted as AugMkProof, to attest that

the share has been committed to ShareAugMT. Furthermore,

SMARTPOOL guarantees that if a miner finds a share that is

a valid Bitcoin block, then the miner must share its reward

with all the pool members in proportion to their previously

submitted shares. In Bitcoin, there is a special transaction

called a “coinbase” transaction whose output consists of a

list of Bitcoin addresses paid and along with their payment

amounts. A share in SMARTPOOL is valid if the miner can

demonstrate that the share has a valid coinbase transaction

1 Input: Empty

2 Output:

3 Value: 12500000

4 scriptPubKey: OP_DUP OP_HASH160 404371705

→֒ fa9bd789a2fcd52d2c580b65d35549d

5 OP_EQUALVERIFY OP_CHECKSIG

6
7 Value: 12500000

8 scriptPubKey: OP_DUP OP_HASH160 08578

→֒ d1ac2b4bb797f6f133933c3ea8fbc418746

9 OP_EQUALVERIFY OP_CHECKSIG

10 ...

Figure 4: An example of a coinbase transaction in SMART-

POOL. The first output pays to the owner of the share.

(labeled as the field Coinbase) in their ShareProof paid out

to the pool members. The miner cannot selectively choose to

omit this transaction; it is required to be the first transaction

in the list of transactions (called TxList) on which the miner

has searched for shares. The claimant must submit a Merkle

root as commitment over the set TxList he has selected,

and a Merkle proof (labeled CoinProof) that it contains the

coinbase transaction. Second, the ShareProof contains an

indication of the verClaimList based on which the payouts

to miners were determined by the claimant. This last field is

called a Snapshot and is an implementation detail to allow

discretizing payouts on an ever-growing verClaimList; we

refer readers to Section IV-D for details. Figure 5 effectively

reports all data fields of our Claim and ShareProof structures.

It is straightforward to see how SMARTPOOL’s use of

cryptographic commitments prevents certain timing vulnera-

bilities. SMARTPOOL asks the miners to fix their coinbase

transaction before starting to mine shares. Once a share is

found, it is not possible to change or eliminate the coin-

base transaction. SMARTPOOL credits the first output of the

coinbase transaction as the founder of the share. Although

miners may use different addresses to submit their claims to

the contract, SMARTPOOL credits only a single account per

share by fetching the beneficiary account from the coinbase

transaction, irrespective of who is the sender of the transaction

submitting the claim. This prevents miners from claiming the

same share to different Bitcoin addresses (or accounts), forcing

a one-to-one mapping between shares found and addresses

credited for it. If a network attacker steals someone else’s

share, it cannot pay itself since the coinbase transaction has

already committed to a payee.

Similarly, a miner cannot decide to change the coinbase

transaction after he has found a share which is a valid block.

This prevents the miner from claiming Bitcoin block rewards

and not sharing them with the pool miners. If he modifies

the coinbase transaction from the TxList after discovering a

block, he must recompute the hash on a different transaction

list which will result in re-doing all the work in finding a valid

Bitcoin block.

Shares in SMARTPOOL vs. centralized pools. Shares in

SMARTPOOL follow the same data templates as that of a block

header in Bitcoin, which is illustrated in Table I. The miner’s

task is to find a valid nonce which results in hash of the

specified share difficulty. If the share satisfies the Bitcoin block
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difficulty, the miner can submit it to the Bitcoin network and

that has the effect of paying out the newly minted Bitcoin to

all the SMARTPOOL members as per the coinbase transaction.

Figure 4 depicts an example of a coinbase transaction in

SMARTPOOL. The first output of the transaction pays to the

miner who is mining the block; latter outputs pay to other

miners included in the verClaimList. The total value of all

outputs in the coinbase transaction equals to the block reward.

The Bitcoin block reward is 12.5 Bitcoin and the transaction

fees of all included transactions, as of this writing. All shares,

whether valid Bitcoin blocks or not, can be directly used in

SMARTPOOL claims.

In a centralized pool, the pool manager prepares the share’s

header as in Table I, but without a valid nonce and gives it to

miners. Once miners find and submit valid shares or blocks,

the pool manager will check whether these shares/blocks are

actually generated from correct headers given by the pool

before accepting them. This is also how the pool operators can

dictate which transaction set to be included in a block. In our

decentralized setting, such pool operators do not exist. Instead,

SMARTPOOL forces a particular structure which miners can

later use to prove that their shares and blocks are constructed

in a valid way — a technique also used in P2POOL.

C. Batched Submission & Probabilistic Verification

The practicality of SMARTPOOL stems directly from its

efficiency in processing a large number of shares claimed.

Miners can claim multiple shares to SMARTPOOL in one

submission. Each Claim includes less than one hundred bytes

which has a cryptographic commitment for the shares, as field

called ShareAugMT. This cryptographic commitment forces

the miner to commit to a set of shares before including them

in the claim. Ideally, before accepting any claim of n shares

submitted by the miner, we want to verify that

(i) all shares submitted are valid;

(ii) none of the shares is repeated twice in the same claim;

(iii) none of the shares is included in one claim are reused in

another.

Probabilistic verification. For efficiency, SMARTPOOL uses

a simple but powerful observation: if we probabilistically

verify the claims of a miner, and pay only if no cheating

is detected, then expected payoff to cheating miners is the

same or lesser than those of honest miners. In effect, this

observation reduces the effort of verifying millions of shares

down to probabilistically verifying one or two!

We provide a way to sample shares to verify, outline a

detailed procedure for checking validity in Section IV-D, and

a full proof in Section V. Here, we begin by explaining this

observation intuitively with an example, since it may appear

too strong or counter-intuitive at first. Let us consider the

case that a cheating miner finds 500 valid shares, but claims

that he has found a 1000 valid shares to SMARTPOOL. If

SMARTPOOL were able to randomly sample one share from

the miner’s committed set, and verify its validity, then the odds

of having detected the cheating is 500/1000 (or 1/2). If the

miner is caught cheating, he is paid nothing; if he gets lucky

without being detected, he gets rewarded for 1000 shares. Note

that the expected payoff for such a miner is still 500, computed

as (0.5 ·1000+0.5 ·0) = 500, which is the same as that of an

honest miner that claimed the right amount of valid shares. The

argument extends easily to varying amounts of cheating; if the

cheater wishes to claim 1, 500 shares, he is detected with with

probability 2/3 and stands to get nothing. The higher his claim

away from the true value of found shares, the lower is the

chance of a successful payout. By sampling more than once,

SMARTPOOL can reduce the success probability of a cheater’s

payout further, thereby strictly disincentivizing cheating as we

show in Section V.

Searching for shares. To enable probabilistic verification,

SMARTPOOL prescribes a procedure for mining shares. Each

SMARTPOOL miner is expected to search for shares in a mono-

tonic order, starting from a distinct value that it commits to.

Specifically, if the set of claimed shared S = {s1, s2, . . . , sn}
by a miner, SMARTPOOL requires that the first k (say 20) bits

of all si ∈ S form a monotonically increasing sequence. To

ensure this, each time a miner find a valid nonce that yields

a valid share, they increment the counter by at least 1 and

search for the next share. When the miner claims for the set

S, this ensures that the set S is lexicographically ordered. If

the nonce is long enough, there is expected to be one share

per counter value, with overwhelming probability. The miner

commits the latest counter in his Claim to this set S, which

has at most one share for each counter value. This eliminates

any repeats in claimed shares in one claim, and across claims

by one miners. In Bitcoin, as we discussed in Section IV-D,

we use the share’s timestamp to act as the counter of a share.

Note that SMARTPOOL effectively guarantees that shares of

miner are distinct from that of others. Each miner has different

beneficiary address, so their Coinbase transactions and share

templates are also different. This ensures that each miner is

searching in a distinct sub-space of the search space over time.

Checking Validity of Shares. To check if miners have

followed the prescribed procedure, SMARTPOOL randomly

samples a share in a submitted Claim, and asks the miner

to submit a ShareProof (as described in Section IV-B).

SMARTPOOL validates the following:

(i) the hash value of the share nonce meets the difficulty

criterion;

(ii) the share is constructed on a TxList which includes the

Coinbase transaction;

(iii) the Coinbase transaction is constructed correctly based

on a valid verClaimList;

The check for (i) is straighforward. The check for (ii) can be

done using the TxMerkleRoot, the Coinbase and the Merkle

proof CoinProof submitted in the ShareProof. The check

for (iii) confirms that a valid verClaimList (identified by

the Snapshot field) is used in the payouts of the Coinbase

transaction, by checking the outputs of Coinbase transaction.

It remains to discuss (a) how miners cryptographically

commit to a batched set of shares in a claim, (b) how does

SMARTPOOL verify that the committed set has monotonically

increasing counters, and (c) how shares are sampled. For (a)
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and (b), one can think of using a standard Merkle tree on all the

claimed share set to generate the cryptographic commitment.

However, in a normal Merkle tree, verifying the inclusion

of a share is efficient, but checking the ordering of the set

elements is not efficient. In SMARTPOOL, we devise a new

data structure called augmented Merkle tree to help us verify

inclusion and ordering of shares efficiently. We describe this

scheme and implementation of sampling on Ethereum next.

D. Detailed Constructions

Augmented Merkle tree. Recall that a Merkle tree is a binary

tree in which each node is the hash of the concatenation of

its children nodes. In general, the leaves of a Merkle tree will

collectively contain some data of interest, and the root is a

single hash value which acts as a certificate commitment for

the leaf values in the following sense. If one knows only the

root of a Merkle tree and wants to confirm that some data x
sits at one of the leaves, then holder of the original data can

provide a path from the root to the leaf containing x together

with the children of each node traversed in the Merkle tree.

Such a path is difficult to fake because one needs to know

the children preimages for each hash in the path, so with high

probability the data holder will supply a correct path if and

only if x actually sits at one of the leaves.

For the purposes of submitting shares in SMARTPOOL, we

not only want to ensure that shares exist in the batch list but

also that there are no repeats and ordering of the counters

is correct. We therefore introduce an augmented Merkle tree

structure which we use to guard against duplicate leaves.

Definition 1 (Augmented Merkle tree). An augmented Merkle

tree for a set of objects S = {s1, s2, ..., sn} with respect to a

integer-valued counter function ctr is a tree whose nodes x
have the form (min(x), hash(x),max(x)) where

(I) min(x) is the minimum of the children nodes’ min (or

ctr(si), if x is a leaf corresponding to the object si),

(II) hash(x) is the cryptographic hash of the concatenation of

the children nodes (or hash(si) if x is a leaf correspond-

ing to the object si), and

(III) max(x) is the maximum of the children nodes’ max (or

ctr(si), if x is a leaf corresponding to the object si).

An augmented Merkle tree is called sorted if all of its leaves

occur in strictly increasing order from left to right with respect

to its counter function.

SMARTPOOL expects claims of submitted shares to be

ordered by their counters. Thus, for our purposes, each object

si will be a share, and the ordering function ctr(x) will return

the timestamp of x. In Appendix A, we discuss alternative

candidates for the ordering function ctr with backward com-

patibility to Bitcoin.

Figure 6 gives an example of an augmented Merkle tree

based on four submitted shares with timestamps as 1, 2, 3, 4
respectively. To prove that the share c has been committed,

a miner has to submit two nodes d and e to SMARTPOOL.

SMARTPOOL can reconstruct other nodes on the path from c

to the root (i.e., b and a sequentially) and accepts the proof if

the computed root is the same as the committed one.

Batch Submission with augmented Merkle trees. After

collecting a list of shares, the miner locally constructs an

augmented Merkle tree for all the shares in the list. It then

submits the data of the root node of the tree along with a

number indicating how many shares it finds to SMARTPOOL.

For example, the miner in Figure 6 submits the node a as

the cryptographic commitment, which has min and max as 1
and 4 respectively. We use this committed data to i) verify

that the sampled shares are found before the miner submits

the claim; ii) efficiently check if a share is duplicated in a

claim. Verifying i) is straightforward as aforementioned. We

compute the probability that we detect duplicated shares in a

claim in Section V. Basically, any duplicated shares in a claim

will yield a sorting error in at least one path of the augmented

Merkle tree. Thus, by sampling the tree in a constant number

of places and checking the corresponding paths, with some

probability we will detect a sorting error in the augmented

Merkle tree if there is one.

Verifying with Samples. Our augmented Merkle tree allows

us to detect if miners over claim shares or submit invalid shares

in a claim. However, it does not help us guarantee that miners

do not submit the same shares in two different claims, i.e.,

over-claiming shares across claims. Our solution to prevent

this problem is to track the counters of the shares in every

claim, or the timestamp in our current implementation. We

observe that, for a single miner, the timestamps are different

for different shares, and often increasing over time. Thus

for any two different claims, the maximum timestamp of the

shares in the earlier claim is always smaller than the minimum

timestamp of the shares in the later one. This observation

enables a simple duplication check on the shares submitted

in two different claims. Specifically, we use timestamps as

the counters for the shares, and require miners to submit

their claims in chronological order of timestamps. We use an

additional variable last max in our smart contract to keep track

of the maximum timestamp (i.e., max value of the root node

in the augmented Merkle tree) from the last claim. We only

accept a new claim if the min value of the root node is greater

than last max, and update last max properly if the new claim

is valid.

Payment scheme. Miners are rewarded according to the

amount of shares that they submitted to the pool. In centralized

pools, the pool manager is able to check every share submitted

by miners, thus can apply any payment scheme precisely

to pay miners for only the valid shares that they submit.

In SMARTPOOL, since we use probabilistic verification, our

payment scheme must be designed to not only pay fairly

to miners, but also disincentivize miners from submitting

invalid shares by penalizing them if they do so. We propose

a candidate of such schemes in Definition 2.

Definition 2 (Payment Scheme). In SMARTPOOL, the pay-

ment scheme for a claim of n submitted shares is as following:
{

Pay all n shares if invalid share was not detected;

Pay 0 otherwise.
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Notations

• Let NSize, NSample denote the number of shares included in a claim and the number of random samples SMARTPOOL

will verify in each claim respectively.

• Let claimList[x] store all unverified claims submitted by the miner at address x.

• Let verClaimList[x][y] store all verified and unpaid claims submitted by the miner at address x at block y.

• Let maxCounter[x] store the maximum counter of the miner at address x.

• We denote d as the minimum difficulty of a share.

Data structures. The Claim structure has the following fields.

1) the number NSize of claimed shares;

2) the ShareAugMT commitment of the set of claimed shares.

The ShareProof structure for a share si has the following fields.

1) the header of the share si (as in Table I) located at the i-th leaf in the augmented Merkle tree;

2) the AugMkProof, attesting that si is committed to the ShareAugMT;

3) the Coinbase transaction;

4) the CoinProof, attesting that the coinbase transaction is included in the TxList of si; and

5) the Snapshot of verClaimList that the Coinbase is computed on.

Main executions in SMARTPOOL

• Accept a claim. Accept a claim C which has the Claim structure and includes NSize shares from a miner x. Add C to

claimList[x] and update maxCounter[x].

• Verify a claim. Receive a proof p which has ShareProof structure for a share si included in a claim C from miner x.

SMARTPOOL verifies the following.

1) if i is the supposed position that we want to sample based on the intended block hash;

2) if si’s hash is included in the claim C by verifying amkpsi ;

3) if si meets the minimum difficulty d;

4) if si’s counter is greater than the last maxCounter[x];
5) if Coinbase is included in si based on CoinProof;

6) if Coinbase is correctly constructed with respect to Snapshot of verClaimList.

We reject the claim C if any of the above checks fail. If everything is correct and we have verified NSamples from C,

update verClaimList[x]. Otherwise, wait for more proofs from miner x.

• Get a new valid block. If a new block is mined by SMARTPOOL, update verClaimList.

For miners

• Fetch coinbase transaction. Fetch verClaimList from SMARTPOOL and build the coinbase transaction locally.

• Find valid shares. Simply search for valid nonce which yields valid shares.

• Submit a claim. If have found enough NSize shares, build an augmented Merkle tree and submit a claim C to

SMARTPOOL to claim these NSize shares.

• Submit proofs. Wait until C is accepted then construct and submit NSamples proofs pi, (i = 1, 2, . . . , NSamples) to

SMARTPOOL.

Figure 5: Summary of how SMARTPOOL protocol works for both the pool and miners.

In Section V, we prove that our payment scheme disincen-

tivizes rational miners from submitting wrong solutions. Our

detailed analysis shows that we need to randomly sample only

1 share in each claim to make expected payoffs from cheating

equal to that of honest mining in SMARTPOOL.

Randomly sampling shares. In order to randomly sample

shares, we need a random seed. A practical random seed

can be the hash of a future block. To reduce the amount of

bias that any adversary can introduce to the block hash, one

can take several samples based on several consecutive block

hashes. For example, let us consider a scenario where a miner

submits a claim of 1 million shares at block 1, and we wish

to sample 5 random shares for our probabilistic verification.

The miner is required to submit the data of 5 shares which

are corresponding to hashes of blocks 1, 2, 3, 4 and 5 (e.g., the

hash values modulo 106) to SMARTPOOL for the verification.

If the miner fails to submit any of these determined shares

after, say, 20 blocks, the share is considered invalid.

Putting everything together, we summarize the entire

SMARTPOOL protocol in Figure 5.
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a = [1, hash(b, e), 4]

b=[1, hash(c, d), 2]

c=[1, share1, 1] d=[2, share2, 2]

e=[3, hash(f, g), 4]

f=[3, share3, 3] g=[4, share4, 4]

Figure 6: A sorted augmented Merkle tree for a list of shares with timestamp values from 1 to 4.

V. ANALYSIS

We analyse the security guarantee that SMARTPOOL pro-

vides with our probabilistic verification and payoff scheme in

Definition 2. In SMARTPOOL, we rely on the block hash in

Ethereum to randomly sample the shares to verify claims from

miners. Thus, our analysis considers two different scenarios in

which the adversary can and cannot drop blocks in Ethereum

to bias the random seeds.

A. Security Analysis

We first analyze the scenario where the adversary cannot

drop Ethereum blocks to introduce bias on our random seed,

so the sample blocks in our probabilistic scheme are ran-

domly selected. We argue that it suffices for the SMARTPOOL

contract to check a single, randomly chosen path through a

submitted augmented Merkle tree in order to pay fairly for

shares, on average. If all submitted shares are valid and there

are no duplicates, then SMARTPOOL pays for all shares with

probability 1. The following facts will be useful.

Lemma 3. For any node x In any augmented Merkle tree,

(I) min(x) is the minimum of all nodes below x, and

(II) max(x) is the maximum of all nodes below x.

Proof. We will prove (I), and (II) follows by symmetry. Let

y be any node below x, and trace a path from x to y in

the given augmented Merkle tree. The min of x’s immediate

children along this path is, by definition of augmented Merkle

tree, no greater than min(x). Similarly for the next children

down, and so on, down to y. Therefore min(x) ≤ y.

Proposition 4. Let A be an augmented Merkle tree. The

following are equivalent:

(I) A is sorted.

(II) For every node x, the max of x’s left child is less than

the min of x’s right child.

Proof. We argue by induction. Assume (I), and further assume

than (II) holds restricted to the first n levels above the leaves

(the leaves are at the ground (i.e., zero) level). Consider a

node x at depth n+ 1. By the inductive hypothesis, the max

of x’s left child is less than the min of the next right child

down, which is less than the min of the next right child down

and so on, all the way down to some leaf y. By a symmetrical

argument, the min of x’s left child is greater than some leaf

z which happens to be to the right of y. Since A is sorted, it

follows that min(x) < y < z < max(x).

Next assume (II), and let y and z be any two leaves. Let

x be the lowest node (farthest from the root) which is an

ancestor of both y and z. By Lemma 3, y is less than or equal

to the max of x’s left child, and z is is greater than or equal

to the min of x’s right child. Now y < z follows from the

assumption, hence A is sorted.

Definition 5. A node in an augmented Merkle tree which

satisfies condition (II) of Proposition 4 is called valid. Fur-

thermore, we say that a path from a root to a leaf is valid if

all its constituent nodes are valid. A path which is not valid

is invalid.

Theorem 6. Let A be an augmented Merkle tree. If A is

sorted, then all paths in A are valid. If A is not sorted, then

there are at least as many invalid paths in A as sorting there

are sorting errors among the leaves. In particular, there are

at least as many invalid paths as there are duplicate values

among the leaves.

Proof. If A is sorted then all its nodes are valid by Proposi-

tion 4, hence all paths in A are valid. Now suppose A is not

sorted, and consider the highest node x in the tree (farthest

from the root) which is is an ancestor of two distinct leaves

y and z where y is left of z but z ≤ y. Now x is not valid,

because by Lemma 3 the max of x’s left child is at least y
and the min of x’s right child is no more than z. It follows

that neither the path from root to y nor the path from root to

z is valid because both pass through x.

The theorem above shows that miners who submit valid,

sorted shares will receive their proper reward. It remains to

demonstrate that sampling and checking a single one branch

in the augmented Merkle tree suffices to discourage miners

from submitting duplicate shares.

Corollary 7. Under the payment scheme in Definition 2, if

SMARTPOOL checks one random branch in the augmented

Merkle tree of a claim, the expected reward when submit

invalid or duplicated shares is the same as the expected reward

when submit only valid shares.

Proof. Suppose that in a claim of an adversary, there are

k shares which are either invalid or duplicated. Since we

randomly pick a path, by Theorem 6, an invalid share is

detected with probability at least k/n. Hence the expected

profit from the payment scheme in Definition 2 is

((n− k)/n) · n+ 0 = n− k,

in which ((n − k)/n) · n is the reward when the cheating

is successful, and 0 is the reward when SMARTPOOL detects
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invalid or duplicated shares. On the other hand, one expects

to obtain this much profit by submitting only the n− k valid

shares. Thus, on average, it is not profitable to submit invalid

shares to SMARTPOOL if we employ the payment scheme in

Definition 2 and check one random path from the augmented

Merkle tree.

In summary, SMARTPOOL can efficiently probabilistically

check that an augmented Merkle tree is sorted. Since it’s

difficult to construct a fake path through an augmented Merkle

tree, we can assume that if the path looks real, then so is the

augmented Merkle tree that contains it.

B. Analysis of Biasing Seed Selection

We next consider the scenario in which the the adversary

is able to drop Ethereum blocks to bias the random seed.

Thus, the sample blocks in our probabilistic verification are

not randomly selected, i.e., the adversary can drop the blocks

which sample invalid shares from his claim. We show that,

even in the extreme case where the adversary controls up to

50% of Ethereum mining power (i.e., can drop 50% of the

blocks), SMARTPOOL contract can check only two randomly

chosen paths through a submitted augmented Merkle tree to

discourage the adversary from cheating. We note that this

analysis is for the completeness of the paper. In practice,

such dropping block attacks rarely happen since the loss from

dropping an Ethereum block is much more than the reward

gained by a claim itself, as we show in Section VI.

Theorem 8. If an adversary controls less than 50% of

Ethereum hash power, then it suffices to sample only two

branches of the augmented Merkle tree based on two Ethereum

consecutive blocks to pay miners fairly, on average.

Proof. We call an Ethereum block a good block for the

adversary A if its hash samples a valid share in the adversary’s

claim; otherwise the block is a bad block. Suppose that in

the adversary’s claim, γ fraction of the shares are invalid

(0 ≤ γ ≤ 1). By Theorem 6, at least γ fraction of the paths in

the corresponding augmented Merkle tree are invalid. Hence,

on average 1−γ fraction of the blocks are good blocks, since

each block hash is a random number. The probability that

the adversary’s claim is still valid after two samples is the

probability that two consecutive blocks in Ethereum are good

blocks. We aim to compute this latter probability.

Let us assume that the choices of the two sample shares are

drawn based on the hash of a single block hash, and let us as-

sume that attacker controls p fraction of the network’s mining

power. The attacker’s strategy is to successively drop blocks

until he finds one that favorably samples his claim submission.

We estimate his probability of success. The probability that he

succeeds in exactly one round, regardless of who mined the

block, is (1− γ)2, that is, if the samples drawn are favorable.

The chances that the attacker wins in exactly two rounds is

the probability that the first block gave unfavorable sampling,

but the attacker managed to mine it, and the next sample was

favorable. The probability that all three of these independent

events occurs is [1 − (1 − γ)2] · p · (1 − γ)2. In general, the

chance that the attacker succeeds in exactly k rounds is

f(k) =
(

1− (1− γ)2
)k−1

· pk−1 · (1− γ)2.

Summing over all possible game lengths k, we find that the

chance that the attacker wins is exactly

∞
∑

k=1

f(k) = (1− γ)2 ·

∞
∑

k=0

[(

1− (1− γ)2
)

· p
]k

.

Since the right-hand side is a geometric series in which the

magnitude of the common ratio is less than 1, we obtain

∞
∑

k=1

f(k) =
1

1− (1− (1− γ)2) · p
=

1

1 + (γ2 − 2γ)p
.

The block withholding strategy is profitable if and only if this

probability exceeds the attackers chances of success without

block withholding, namely 1 − γ. That is, the values p for

which block withholding is advantageous satisfy

1

1 + (γ2 − 2γ)p
> 1− γ. (2)

We complete the analysis by inspecting the cases where p is

greater than or less than the threshhold 1/(2γ−γ2). In the first

case it follows that p ≥ 1/2, since this threshhold is always

at least 1/2 when 0 < γ ≤ 1, and if γ = 0 then the attacker

has no incentive for dropping blocks. In the second case, the

left hand side of (2) is negative, and so the inuequality in (2)

fails in this case.

Our result in Theorem 8 also applies to the scenario in Sec-

tion V-A where the adversary cannot drop Ethereum blocks.

By checking only two samples in each claim, SMARTPOOL

disincentivizes miners to submit invalid shares, and still pays

fairly to honest miners, on average.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe how we implemented SMART-

POOL in our prototype and present experimental evaluation of

the expected fees after deploying our prototype in Ethereum

testnet.

A. Implementation

We implement SMARTPOOL protocol (as described in Fig-

ure 5) in an Ethereum smart contract. Our implementation

consists of three modules, namely, claim submission, verify

submission and block submission.

Claim submission. This module allows miners to submit

their shares in batch. A miner submits a set of shares by

calling submitClaim() with the parameters: (i) augmented

Merkle root of the corresponding augmented Merkle tree for

the shares; (ii) number of shares in the tree; (iii) timestamp

interval of the shares. A submission is accepted only if the

initial timestamp is greater than the previous submission final

timestamp.

Verify submission. A miner submits a proof for the validity of

his last submitted batch of shares by calling verifyClaim()
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with a branch in the augmented Merkle tree that corresponds

to the next block hash. In our current implementation, we

only sample one branch, or NSample = 1. We allow different

claims to include different amounts of shares, i.e., NShare

are different between claims. If the verification fails, then the

claim is discarded, and the miner will not be able to submit

all the shares (or a subset of them) again (forced by validating

timestamp in submitClaim()). If the verification is successful,

then the claim is added to the to the verifiedClaim list.

Construct and verify coinbase transaction. Recall that the

payment to the miners is done via the coinbase transaction

of a mined block. As per Figure 5, SMARTPOOL allows

miners to fetch the verifiedClaim list and build the coinbase

transaction locally. This approach, however, has a technical

challenge regarding the transaction size when we implement

SMARTPOOL in the current Ethereum network. Specifically, a

single coinbase transaction should be able to pay to hundreds

or thousands of miners, thus it will have as many outputs.

As a result, the size of the coinbase transaction could be in

the order of 10KB (e.g., P2POOL’s coinbase transactions is of

size 10KB 7). Hence, it is expensive to submit a coinbase

transaction of that size to an Ethereum contract. Thus, in

SMARTPOOL implementation we could not ask miners to sub-

mit the coinbase transaction as the input for verifyClaim()
function.

To address the challenge, we modify SMARTPOOL protocol

slightly. Instead of asking miners to construct and submit the

whole coinbase transaction, we ask them to work on only a

small part of it. Specifically, we observe that we can fix the

postfix of the coinbase transaction by using the pay per share

scheme. Recall that the block reward consists of the block

subsidy (12.5 Bitcoin) and the transaction fees. Thus, in our

implementation, we pay the transaction fee to the miner who

finds the block in the first output of the coinbase transaction.

The rest 12.5 Bitcoin (the block subsidy) is paid to, say, the

next 1 million shares in verifiedClaim. This distribution

is encoded in all the latter outputs. Thus, we can fix all the

outputs but the first one in the coinbase transaction, since

the next 1 million shares in verifiedClaim are the same

for all miners. This allows us to maintain the postfix of the

coinbase transaction in SMARTPOOL and only ask miners to

submit the prefix (the first output) when they verify a share.

Our approach significantly reduces both the gas fees paid for

verifyClaim() and also the amount of bandwidth that miners

have to send for verification.

Block submission. The block submission module allows any

user to submit a witness for a new valid block in the Bitcoin

blockchain so that SMARTPOOL can have the latest state of the

blockchain. If the block is mined by miners in SMARTPOOL,

SMARTPOOL updates the verifiedClaim list to remove the

paid shares from the list. This also reduces the amount of

persistent storage required in the contract since we do not

need to store all verified claims in SMARTPOOL.

There are other technical subtleties in block submission

and constructing coinbase transaction, we discuss these in the

Appendix A.

7http://tinyurl.com/zrp3dod

Function Gas Price Tx size

submitFullBlock() 297550 0.07 1925

submitClaim() 38757 0.008 68

verifyClaim()
210 shares 395587 0.09 1956

220 shares 441256 0.10 2956

230 shares 452127 0.10 3236

240 shares 486862 0.11 3876

250 shares 608207 0.13 4516

Table II: Ethereum fee of contract operations. Prices are in

USD based on the price of 11 USD per Ether (as of November

2016.) Tx (transaction) size is in bytes.

B. Experimental results

In this section we present experimental results to evaluate

the ethereum fees that our protocol entails. The results are

presented in Table II. In our experiments Bitcoin blocks

contain 2048 transactions (roughly the maximum number of

transactions a block can have 8), and coinbase transactions

have 300 outputs (i.e., 300 miners are paid whenever a block is

found). The contract contains 450 lines of Solidty code and we

deployed it in Ethereum testnet network 9. The deployment of

the contract consumed 3223680 gas (0.72 USD). The contract

source code is anonymously available at 10. The transactions

we used for the evaluation are 11 12 13 14 15 16 17.

Execution Costs. To compare our fees with standard pool fees

we calculate the expected fees for every submitted share. The

expected fee depends on three values:

• Bitcoin’s block reward.

• The value (difficulty) of a share.

• Size of a claim (i.e., number of shares).

Bitcoin’s block reward is currently 12.5 BTC or more than

8, 000 USD. A share difficulty depends on the miner hash

power. It is recommended that miners should set the difficulty

such that a share is submitted 20 times per minute 18. Hence, a

single ASIC miner with 4Th/s mining power, which has only

third of the hash rate with comparison to the most modern

mining ASICs 19, should set his share difficulty to 4,096 20.

Hence, on average, each of his shares should be rewarded

8, 000 ·
4, 096

254, 620, 187, 304
= 0.00012869 USD (3)

Finally, we set the size of a claim to 100, 000. We note that

in 20 share per minute rate, a batch submission should occur

8https://blockchain.info/charts/n-transactions-per-block
9http://tinyurl.com/j4g54gr
10http://tinyurl.com/zmlae5y
11http://tinyurl.com/hcuy8xn
12http://tinyurl.com/z62mxpz
13http://tinyurl.com/zfemq7l
14http://tinyurl.com/zftnr65
15http://tinyurl.com/zvncv7y
16http://tinyurl.com/gp77d5z
17http://tinyurl.com/zq8f66c
18https://slushpool.com/help/#!/manual/terminology#vardiff
19https://www.hobbymining.com/mining-hardware/
20https://slushpool.com/help/#!/first-aid/troubleshooting

http://tinyurl.com/zrp3dod
https://blockchain.info/charts/n-transactions-per-block
http://tinyurl.com/j4g54gr
http://tinyurl.com/zmlae5y
http://tinyurl.com/hcuy8xn
http://tinyurl.com/z62mxpz
http://tinyurl.com/zfemq7l
http://tinyurl.com/zftnr65
http://tinyurl.com/zvncv7y
http://tinyurl.com/gp77d5z
http://tinyurl.com/zq8f66c
https://slushpool.com/help/#!/manual/terminology#vardiff
https://www.hobbymining.com/mining-hardware/
https://slushpool.com/help/#!/first-aid/troubleshooting
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every 3.5 days. One can always adjust the share difficulty to

be able to submit their claim with higher frequency.

In our pool, the effective block reward is slightly smaller, as

0.07 USD of the block reward should be given to the miner

who submitted the witness for a block that was found (see

Table II). In addition, every claim submission also have fees.

For a batch of size 100, 000, the total fees for the submission

are 0.108 USD. Hence, the expected reward per share is

(8, 000−0.07)·
4, 096

254, 620, 187, 304
−

0.108

100, 000
= 0.0001276 USD

(4)

From (3) and (4), our pool fees, as a fraction of the share

reward, are

0.00012869− 0.0001276

0.00012869
= 0.0084

Namely, our fees are less than 1%, which are less than fees

in most of the centralized pools [21].

Costs of non-probabilistic verification approach. To demon-

strate the usefulness of the probabilistic verification, we also

deployed a DUMBPOOL contract 21 which verifies each share

In this contract every share is submitted to verifyShare

function in order to check its validity and claim a payment. In

this approach, a single call to verifyShare consumes 320056

gas, costs 0.07 USD and requires 1,124 bytes of data 22. We

note that the fee of the submission exceeds the share reward by

two orders of magnitude. Hence, such an approach is infeasible

with Ethereum contracts.

VII. APPLICATIONS

We discuss several applications that can be built based

on SMARTPOOL. One straightforward application is to build

decentralized mining pools for cryptocurrencies as we have

established. Apart from requiring low costs, guaranteeing low

variance in rewards to miners than the only related solution

P2POOL, SMARTPOOL is also more secure. Specifically, one

must compromise the entire Ethereum network (e.g., having

more than 50% of Ethereum network) in order to compromise

SMARTPOOL. On the other hand, the adversary only needs

to acquire 51% of P2POOL’s mining power in order to build

the longest share-chain in P2POOL and rule out other miners’

contributions.

The second application is a new cryptocurrency based on

SMARTPOOL in which mining is fully decentralized. Typ-

ically, we enforce the consensus rule such that only the

blocks generated by SMARTPOOL is accepted as valid blocks.

Thus, if we are able to run a pool’s smart contract based

on SMARTPOOL in the same cryptocurrency network, min-

ers have no incentives to go for centralized pools. In such

cryptocurrencies, miners can solo mine and still enjoy low

variance in reward, better security guarantee and pay no fee.

Unfortunately, it is not feasible to deploy the above idea

in existing cryptocurrencies without a major change in their

design. As shown in previous Sections, we run SMARTPOOL

as a Bitcoin mining pool in Ethereum network (but not a

21http://tinyurl.com/hzlcxl2
22http://tinyurl.com/z8oszxr

Bitcoin mining pool in the Bitcoin network, or an Ethereum

mining pool in the Ethereum network) is because of two

reasons. First, its not technically possible to run SMARTPOOL

in the Bitcoin network yet since Bitcoin’s script is very strict

and not expressive enough to implement all logics in SMART-

POOL. Second, running SMARTPOOL as an Ethereum mining

pool requires additional complications (see Appendix B) since

efficiently verifing Ethereum’s proof of work within a smart

contract is hard 23.

Technically, one can easily build a SMARTPOOL-based

cryptocurrency by replacing the proof of work in Ethereum

by the Bitcoin’s proof of work and adding the aforementioned

consensus rule which dictates that only SMARTPOOL can

produce new valid blocks. Such cryptocurrencies can offer

several good properties to the network that existing cryp-

tocurrencies cannot. First, mining is fully decentralized, yet

miners still enjoy low variance in reward. This improves the

security of the underlying network as a whole significantly.

Second, miners are not susceptible to several attacks targeting

to pooled mining. For example, in [13], [17], [18] the authors

demonstrate that if a malicious miner withholds blocks from

a victim pool and mines privately in other pool, the miner can

earn more profits from the loss of miners in the victim pool.

Such block withholding attack does not work in SMARTPOOL-

based cryptocurrencies since there is only one pool in the

network.

VIII. RELATED WORK

P2POOL. The work which most directly relates to SMART-

POOL is P2POOL [9]. At a high level, P2POOL maintains

a share-chain among the miners in the pool: once miners

find a share they broadcast it to everyone so others can

extend the share-chain further. Thus, miners in P2POOL run

a second consensus protocol on top of the main Bitcoin

consensus protocol to agree on the list of shares that each

miner contributes to the pool. As discussed in Section II,

P2POOL consumes much more resource (both computation

and network bandwidth), and the variance of reward is still

much higher than in centralized pools. SMARTPOOL solves

these problems in P2POOL by i) relying on the smart con-

tracts which are executed in a decentralized manner; ii) use

probabilistic verification and novel data structure to reduce

verification costs significantly; iii) apply appropriate payment

scheme to discourage miners from cheating the pool. As a

result, SMARTPOOL is the first decentralized pooled mining

protocol which has low costs, guarantees low variance of

reward to miners. Further, SMARTPOOL is more secure than

P2POOL since any miner who has more than 50% of the

mining power in P2POOL can fork and create a longer share-

chain. On the other hand, the adversary has to obtain more

than 50% of computation power in Ethereum network to

compromise SMARTPOOL.

Pooled mining research. Several previous works have anal-

ysed the security of pooled mining in Bitcoin [3], [13], [14],

[17], [18]. In [13], [17], [18], the authors study the block

23ethereum.stackexchange.com/questions/2328/is-it-possible-to-verify-
ethash-pow-in-a-contract

http://tinyurl.com/hzlcxl2
http://tinyurl.com/z8oszxr
ethereum.stackexchange.com/questions/2328/is-it- possible-to-verify-ethash-pow-in-a-contract
ethereum.stackexchange.com/questions/2328/is-it- possible-to-verify-ethash-pow-in-a-contract
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withholding attack to mining pools and show that the attack

is profitable when conducted properly. In [14] Rosenfeld et

al. discuss (i) “pool hopping” in which miners hop across

different pools utilizing a weakness of an old payoff scheme,

and (ii) “lie in wait” attacks where the miner strategically

calculates the time to submit the found block. These attacks

also apply to SMARTPOOL when SMARTPOOL is used as a

decentralized mining pool in existing network. However, in

SMARTPOOL-based cryptocurrencies where there is only one

mining pool which follows SMARTPOOL design, these attacks

no longer work.
In [8], Miller et al. study different puzzles and protocols

which either make pooled mining impossible and/ or disin-

centivize it. Out work is different from [8] in several aspects.

First, we aim to provide an efficient and practical decentralized

pooled mining protocol so miners have an option to move

away from centralized mining pools. Second, SMARTPOOL

is compatible with current Bitcoin and Ethereum networks

as we do not require any changes in the design of these

cryptocurrencies. In [8], the solutions are designed for new

and future cryptocurrencies which have different design from

existing ones.
In [2], [3], the authors study the decentralization of the

Bitcoin network. Gervais et al. in [2] showed that Bitcoin

is not as decentralized as it was design to be in terms of

services, mining and protocol development. On the other hand,

Bonneau et al. provided an excellent survey on Bitcoin which

also covered the security concerns of pooled mining [3].

Smart contract applications. Previous works have proposed

several applications which are built on top of smart con-

tracts [11], [12], [22]. For example, in [11], Juels et al. study

how smart contracts support criminal activities, e.g., money

laundering, illicit marketplaces, and ransomware due to the

anonymity and the elimination of trust in the platform. Such

applications are built separately from the underlying consensus

protocol of the network. In this work, we propose a new

application of smart contract that enhances the security of the

underlying network by supporting decentralized mining pools

with low variance of reward, high efficiency and security.

IX. CONCLUSION

In this paper, we present a new protocol design for an ef-

ficient decentralized mining pool in existing cryptocurrencies.

Our protocol, namely SMARTPOOL, resolves the centralized

mining problem in Bitcoin and Ethereum by enabling a plat-

form where mining is fully decentralized, yet miners still enjoy

low variance in reward and better security. Our experiments in

the Ethereum testnet show that SMARTPOOL is efficient and

ready for deployment in real networks.
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how a miner should decide on his coinbase transaction in the

next share he mines.

Witness for a new valid block. Intuitively, a witness for a new

block is a block header with sufficient difficulty. However, in

Bitcoin network (like in any blockchain based network), some
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form a consensus over only one of the blocks, and the other

block(s) will become orphan (and will not get any block

reward from the network). In our protocol we must update

the miners verClaimList list only according to non-orphan

blocks. For this purpose, as a witness we ask for a chain of

six blocks. While in theory, even a chain of six blocks could

become orphan, in practice it never happened.

Deciding on the coinbase transaction of the next share.

In order for a share to be valid it must have a coinbase

transaction that corresponds to a verClaimList list. How-

ever, the verClaimList list is updated by the Ethereum

contract. Hence, the contract is only aware of the Ethereum

timestamp in the time the list is updated. On the other

hand, verifyClaim() function supposes to verify the coinbase

transaction according to the Bitcoin timestamp of the share.

For this purpose we need to synchronize Bitcoin and Ethereum

timestamps. The synchronization is done by introducing a new

time metric, namely, the number of blocks SMARTPOOL has

found. With this new notion of timestamp, we implement the

verClaimList list in such way that a list of payment claims

is maintained for every integer n. The list of n corresponds to

the payments that have to be done when SMARTPOOL finds

block number n. As new blocks might be reported with some

delay, a payment request for a bulk that is verified in time n
is added to the payment list of time n+ 20.

Given this implementation, the miner should construct the

coinbase transaction in time n in the following way: As long

as a new block is not found, the coinbase should correspond to

list n. Once a new block is added to Bitcoin’s blockchain, the

miner should immediately start working on list n+ 1 (which

already exists, as it was constructed at time n − 19), even

before the new block is submitted to the contract. If the new

block becomes orphan, the miner should switch back to list

n. Otherwise, after six blocks he should submit a witness for

block n.

We note that in this approach the miner might do some stale

unrewarded work in case the new block ends as an orphan

block. However, such cases are also not rewarded in standard

pools.

Other candidates for counter. Careful readers may realize

that the timestamp field has only 4 bytes, thus we will run out

of values for the counter after 232 shares. In SMARTPOOL,

one can have several ways to implement the share’s counter.

For example, one can embed the counter inside the coinbase

transaction of a share. Specifically, Bitcoin allows users to

insert 40 random bytes in a transaction output after the

OP RETURN opcode 24. SMARTPOOL can force miners to store

the share’s counter in these 40 bytes, which can accommodate

much more number of shares (i.e., 2320).

B. Verifying Ethereum PoW

The cryptographic hash function that Ethereum is using is

Ethash 25. Ethash is not a native opcode nor a pre-compiled

contract in the Ethereum virtual machine (EVM). Hence, to

24https://en.bitcoin.it/wiki/OP RETURN
25https://github.com/ethereum/wiki/wiki/Ethash

verify that a block header satisfies the required difficulty we

have to explicitly implement a code that computes it. Ethash

was designed to be ASIC resistance, which is achieved by

forcing miners to extract 128 values from pseudo-random

positions of a 1 GB dataset. Thus, to explicitly compute Ethash

we would have to store 1 GB data in a contract, which

costs roughly 33,554 ether (storing 32 bytes of data costs

50,000 gas). Moreover, the Ethereum protocol dictates that

the dataset is changed every three days (on average). Hence,

one would require a budget of approximately $100,000 per

day to maintain the dataset 26.

Luckily, for our purposes, there is no need to compute

Ethash. Instead it is enough to verify that result of an Ethash

computation. For this purpose it is enough to ask the miner to

submit along with every block header the 128 dataset values

that are used when computing its Ethash and a witness for the

correctness of the dataset elements, i.e., that the 128 values

correspond to the values of the corresponding positions in

the 1 GB dataset. Intuitively, to verify the witness for dataset

elements the contract will hold merkle-root of the dataset and a

witness for a single element is its merkle-branch. Formally, the

pool contract holds the merkle-roots of all the 1 GB datasets

that are applicable for the next 10 years. We note that the

content of the dataset only depends on block number (i.e., the

length of the chain). Hence, it is predictable and the values of

all future datasets is already known. Storing one year dataset

roots requires storing 122 elements, and would cost 0.122
Ether. Hence, storing 10 years of dataset roots would cost

in the order of 1 Ether.

We note that technically, our approach does not provide a

mathematical guarantee for the correct computation of Ethash.

Instead it guarantees correct computation provided that the

correct dataset roots were stored. Hence, it is the miner’s

responsibility (and best interest) to verify the stored values

(at least for the next several months) before joining the pool.

As the verification is a purely algorithmic, no trust on the

intentions of the contract authors is required.

Further optimizations. Some initial experiments 27 suggests

that the computation of Ethash would still require non-trivial

amount of gas (in the order of 3M gas). The consequence of

an expensive verification is that miners would have to submit

big batches in order to keep fee at low level. To reduce the

expected fees we propose to skip the validation of some of

the batches. Denote p = 1

N
for some integer N . We propose

to verify a batch only with probability p, and if the batch is

invalid then we seize a reward of N submitted batches. For

this purpose we change the protocol in the following way:

• Miner can withdraw the reward for its first N submissions

only when he leaves the pool.

• In the first N submissions, every batch is verified.

26Technically, one could store a smaller subset of seed elements and
calculate the values of the dataset on the fly. Unfortunately, to extract values
from seed one would have to compute SHA3 512, which is not a native
opcode in the EVM, and would require massive gas usage if employed many
times.

27http://tinyurl.com/gw83mqs

https://en.bitcoin.it/wiki/OP_RETURN
https://github.com/ethereum/wiki/wiki/Ethash
http://tinyurl.com/gw83mqs
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• After the first N submissions, a batch is verified only

with probability p.

We now analyze the economic implications of the changed

protocol. On the positive side, in the long run, the expected

fees are dropped by a factor of N . On the negative side, a

miner would have to pay fees in the order of 0.1 Ether for each

of the first N batches (which is reasonable for e.g., N = 10).

In addition, he will get a possession over his first N batches

reward only when he leaves the pool.
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