
DDoSCoin: Cryptocurrency with a Malicious Proof-of-Work

Eric Wustrow

University of Colorado Boulder

ewust@colorado.edu

Benjamin VanderSloot

University of Michigan

benvds@umich.edu

Abstract

Since its creation in 2009, Bitcoin has used a hash-

based proof-of-work to generate new blocks, and create a

single public ledger of transactions. The hash-based com-

putational puzzle employed by Bitcoin is instrumental to

its security, preventing Sybil attacks and making double-

spending attacks more difficult. However, there have been

concerns over the efficiency of this proof-of-work puzzle,

and alternative “useful” proofs have been proposed.

In this paper, we present DDoSCoin, which is a cryp-

tocurrency with a malicious proof-of-work. DDoSCoin

allows miners to prove that they have contributed to a

distributed denial of service attack against specific tar-

get servers. This proof involves making a large number

of TLS connections to a target server, and using crypto-

graphic responses to prove that a large number of con-

nections has been made. Like proof-of-work puzzles,

these proofs are inexpensive to verify, and can be made

arbitrarily difficult to solve.

1 Introduction

Cryptocurrencies rely on proofs-of-work that require min-

ers to spend a large amount of effort to solve a specific

puzzle. Solutions to these puzzles, on the other hand, are

designed to be inexpensive to verify. In Bitcoin, the proof-

of-work is a computational puzzle based on the SHA256

hash function, and miners are tasked with finding a partial

preimage. The best way to do this is to iterate over a

large number of inputs to the hash function, and check if

the output hash satisfies the partial preimage target. In

simplified terms, to find an input that hashes to N bits

of zeros, the miner must perform on average 2N hashes.

Once such an input is found, other miners and Bitcoin

nodes can verify the puzzle solution with a single hash 1.

1Bitcoin uses double-SHA256 in its design, but this detail is not

important for the purposes of this paper.

Although the proof-of-work used in Bitcoin gives it

resistance to sybil attacks, the amount of computational

effort carried out collectively by its miners does not con-

tribute to any useful problems besides securing the cur-

rency from attack. Indeed, this computational effort is sub-

stantial: As of 2016, miners collectively perform roughly

1018 (or about 260) hashes every second [2].

Many see this distributed computation as a colossal

waste of CPU resources, and researchers have proposed

alternative cryptocurrencies, or altcoins, that aim to have

more beneficial proofs-of-work [13, 16] that provide util-

ity beyond securing the underlying currency: finding

chains of large primes or proving the archive of data.

In this paper however, we investigate going in the oppo-

site direction, and propose an altcoin that has a malicious

proof-of-work that is externally detrimental.

In particular, we propose a proof-of-work that allows

miners to prove they have participated in a distributed de-

nial of service, or DDoS, attack against a particular target.

Miners are incentivized to send and receive large amounts

of network traffic to and from the target in order to pro-

duce a valid proof-of-work. As in other cryptocurrencies,

these proofs can be inexpensively verified by others, and

the original miner can collect a reward. This reward can

be sold for other currencies, including Bitcoin or even

traditional currencies, allowing botnet owners and other

attacks to directly collect revenue for their assistance in a

decentralized DDoS attack.

The malicious “proof-of-DDoS” operates by having

miners create a large number of TLS connections to a

target webserver, and using the server’s signed responses

as a proof of connection. In modern versions of TLS,

the server signs a client-provided parameter during the

handshake, along with server-provided values used in the

key exchange of the connection. This allows the client to

prove to others that it has communicated with the server.

In addition, the signed value returned by the server is

not predictable to the client, and is randomly distributed.

Thus, clients can use a similar trick as in Bitcoin, and

only report connections that match some rare threshold,

such as the signature from the server starts with N bits of

zeros. On average, it will take clients 2N connections to

produce such a proof.

Although the malicious proof-of-DDoS only works

against websites that support TLS 1.2, as of April 2016,

over 56% of the Alexa top million websites support

this version of TLS [10]. Furthermore, we expect

this number to increase as TLS support becomes more

widespread [11].

Using our proof-of-DDoS, we conceptualize a cryp-

tocurrency that uses it, which we call DDoSCoin. In addi-

tion to using proof-of-DDoS, DDoSCoin allows miners

to select the victim servers by consensus using a proof-

of-stake protocol. Rather than specify a single website or

static list that DDoSCoin miners target, choosing them

by consensus allows the choice of who is attacked to be

made collectively and fairly by DDoSCoin participants.

Contributions:

• Propose a novel conceptual cryptocurrency,

DDoSCoin, whose proof-of-work incentives miners

to participate in a DDoS attack, and allows them to

prove they have done so

• Describe a way for target victims to be chosen by

consensus of its participants

• Implement our proof-of-work function and evaluate

its performance and impact

• Discuss several defenses against such a cryptocur-

rency that potential victims can employ

2 Related Work

Many alternate cryptocurrency protocols have been pro-

posed since the creation of Bitcoin. Although none have

yet eclipsed the popularity of Bitcoin, many so-called

altcoins have interesting innovations, often in the form

of alternate proof-of-work. For example, Litecoin uses

scrypt in place of SHA256 in its proof-of-work, with

the intention of being “ASIC-resistant” in order to allow

anyone to mine competitively with only a CPU [1].

Permacoin is a proposed altcoin that uses a novel proof-

of-storage [16]. Rather than waste computational re-

sources solving a useless proof-of-work puzzle (such as in

Bitcoin), miners are instead incentivized to store parts of

a large agreed-upon file. In order to be competitive in Per-

macoin, miners prove that they can retrieve an assigned

portion of the file.

In Primecoin, miners search for special chains of prime

numbers [13]. Although Primecoin has found several

large Cunningham and bi-twin prime chains, it remains

unclear if such primes have any practical use.

TorPath proposes a proof-of-bandwidth altcoin that in-

centivizes users to participate in the Tor Network [12].

However, it relies on a set of semi-trusted centralized

servers to assign Tor circuits to clients. It is also suscepti-

ble to collusion and Sybil attacks by participants, however

many of these attacks are outside the threat model of Tor-

Path, as it requires performing those attacks against the

underlying Tor network. In contrast, DDoSCoin does

not require any centralized parties for the proof-of-DDoS,

besides trusting existing TLS certificate authorities to

validate domains.

Although Bitcoin uses a scripting language for trans-

actions (see Section 3.1), the allowed operations are very

limited [17]. Ethereum allows transactions to be pro-

grammable contracts, whereby a transaction can be speci-

fied in a custom scripting language with arbitrary logic, in-

cluding conditional payments or fee-collection. While the

Ethereum Virtual Machine that executes these contracts

does not provide external network access to the scripts, it

could still be used to implement some parts of DDoSCoin.

For example, it is possible to create an Ethereum contract

that pays a bounty to anyone that can provide a proof-

of-DDoS for a specified target. This would effectively

accomplish the same outcome as PAY_TO_DDOS (de-

scribed in Section 4.3.1) by implementing DDoSCoin’s

proof-of-DDoS verification.

3 Background

In this section, we review relevant basics of cryptocur-

rency. For more detail, we refer the reader to other

sources [3, 17, 18].

3.1 Cryptocurrency

Bitcoin employs a hash-based proof-of-work protocol to

construct a public ledger of transactions. In this protocol,

miners attempt to solve a simple hash-based computa-

tional puzzle in order to mine blocks. Mining a block nets

the miner a reward and the right to specify what new, valid

transactions should be included in the public ledger. To

mine a block, a miner must find a hash of a block header

that is less than an adjustable target. The block header

includes the hash of the last block found, the Merkle root

of the list of transactions the miner wants to include in this

block, and a nonce. The easiest way to solve this puzzle

is to iterate the nonce2 until the hash satisfies the target

difficulty. Then, the miner publishes the found block, and

miners use this block as the latest block.

Each block commits to a set of transactions, where each

must be valid for the block to be considered valid. Trans-

actions in Bitcoin are scripts, and each new transaction

specifies an output script that must be satisfied in order for

2or modify transactions, thereby changing the Merkle root

2

INPUT:

 scriptSig A

OUTPUT:

 scriptPubB 10

OP_DUP OP_HASH160 <hashPubB> OP_EQUALVERIFY OP_CHECKSIG

INPUT:

 scriptSig B

OUT:

 scriptPubC 10

<sig> <pubKeyB>

OP_DUP OP_HASH160 <hashPubB> OP_EQUALVERIFY OP_CHECKSIG <sig> <pubKeyB>

…

Transaction #9

Transaction #10

Verification:

Figure 1: Standard Bitcoin transaction script — Transaction #10 spends #9 by providing a valid input script that

when prepended to Transaction #9’s output script, executes to produce a valid output. The output script stores a hash

of a public key (verified using the OP_DUP OP_HASH160 and OP_EQUALVERIFY opcodes), and requires a valid

signature over the spending transaction (verified via OP_CHECKSIG).

the coins to be spent. For example, an output script might

specify that it requires a spending transaction to provide

a valid signature, with the output script specifying the

public key to validate it with. To spend such a transaction

requires creating a new transaction that references the pre-

vious one, and provides an input (scriptSig) that “solves”

the previous transactions’ output (scriptPubKey). In this

case, a valid signature over the new transaction. This new

transaction can then specify a new output (scriptPubKey)

for these coins. Figure 1 shows an example of a standard

Bitcoin transaction script.

3.2 Proof-of-Stake

Proof-of-Stake is an alternate way of generating new

blocks in a cryptocurrency. In this system, blocks are

“minted” (rather than mined) based on how much stake

the miner has in the currency (rather than their fraction of

computational power). Proof-of-stake assumes that the un-

derlying cryptocurrency is already somewhat distributed,

for example through prior use of a traditional proof-of-

work system. There are several variants on proof-of-stake;

in this subsection, we will describe Peercoin, an active

alternate cryptocurrency that employs a hybrid proof-of-

work and proof-of-stake algorithm to mint blocks. For

more details on proof-of-stake, we refer the reader to the

Peercoin [14] and NXT [5] whitepapers.

Peercoin’s proof-of-stake allows currency holders to

mint new blocks based on how many coin-days they are

able and willing to consume. “Coin-days consumed” is a

measure of the product of the amount of coins spent in a

transaction, and the number of days since they were last

spent. For example, to consume 10 coin-days, a currency

holder can spend 10 Peercoin that they have held for a day,

or equivalently, spend 5 Peercoins that were last spent 2

days ago. Note that the holder can send these coins to

anyone—including themselves—in order to consume the

coin age.

To mint a new block, a minter creates a special trans-

action, presumably one where the minter pays themself,

where one of the inputs has been unspent for at least

30 days. The resulting transaction, along with a times-

tamp, must meet a certain hash target that gets easier

proportional to how many coin-days are consumed by the

transaction. For example, if the current difficulty gives a

minter consuming 100 coin-days a 1% chance of minting

a block per second, a minter that was able to consume

200 coin-days would have a 2% chance per second.

The input to the hash includes information about the

“aged” transaction, as well as a current timestamp3. If

this hash is less than the current target multiplied by the

number of coin-days consumed in the transaction, then

the transaction meets the proof-of-stake difficulty and a

new block is minted. Although this looks similar to a

proof-of-work check where a hash is being compared to

a target, here the only varying inputs are the long-lived

3In recent versions of Peercoin, the hash also includes a stakeModi-

fier which is computed from recent blocks; however, these details are

not important for our purposes

3

input transaction, and a course-grained timestamp with

a resolution of 1 second. Thus, for each aged unspent

transaction output they control, minters perform only one

hash per second in order to solve the proof-of-stake.

In Peercoin, coins cannot age beyond 90-days; coins

that have not been consumed after 90-days are counted

as 90-day-old coins. This prevents very old coin-holders

from being able to disrupt the blockchain at a future date,

potentially causing a large fork of the blockchain and

destabilizing it.

When a proof-of-stake block is minted, the minter is

allowed to collect a small subsidy proportional to the coin-

age consumed in their proof-of-stake transaction. This

serves as the only reward for a minter, as transaction fees

are not collected by minters in Peercoin.

4 DDoSCoin Design

Miners in DDoSCoin repeatedly create connections to a

TLS victim server, and check for a response that satisfies

a target difficulty decided by the network. If the response

satisfies this condition, then parameters of the TLS hand-

shake can be published by the miner to create a new valid

block. This connection is depicted in Figure 2.

To begin, a miner generates a random 32-byte secret

nonce, N. The miner also selects the latest block in the

chain it is mining on, and the set of transactions that the

miner intends to include in this block, both as is done in

Bitcoin. The miner then computes:

SHA256(prev_block||merkle_root||N) (1)

to generate the 32-byte client_random, where

prev_block is the SHA256 hash of the previous block

header, merkle_root is the Merkle root of transactions as

computed in Bitcoin, and N is the random nonce.

The miner initiates a TLS version 1.2 [8] connection

with the victim server, using the client_random, and

choosing a set of cipher suites that will ensure the server

will send a server key exchange message. This includes

ephemeral Diffie-Hellman (DHE), and ephemeral elliptic

curve Diffie-Hellman (ECDHE). We note that for the

default cipher suite list sent by Google Chrome, over

94% of TLS 1.2 servers in the Alexa top million choose

a cipher suite with a server key exchange message [10],

compatible with DDoSCoin.

The server will respond with a server hello message,

containing a 32-byte server_random, the cipher suite

that will be used, and other parameters that are not needed

for the purposes of DDoSCoin.

Next, the server sends its certificate chain, and a server

key exchange message. The certificate chain contains the

server’s signed TLS certificate, as well as intermediate

certificate authorities that create a signature chain to a

browser-trusted root CA. Inside the server’s certificate is a

public key, as well as the identity of the server represented

by it’s domain. The miner stores these for verification in

case a block is found.

In the server key exchange message, the server sends

key exchange parameters such as the Diffie-Hellman pa-

rameters and the ephemeral public value generated by the

server, or the curve parameters and a public curve point in

ECDHE. The server signs these key exchange parameters,

along with the client_random and server_random.

This signature can be verified with the public key in the

certificate.

Since the server key exchange signature contains

the client_random and server_random, the signature

value will be unpredictable to the client ahead of time.

In addition, each signature will be a random value that

depends on the miner-provided nonce. Thus, it can be

used as a proof-of-work.

If the SHA256 hash of the server key exchange param-

eters, signature, and miner-chosen nonce N is less than

the current target difficulty, then this connection satisfies

the proof-of-work threshold, and can be used to form

the next block. We hash N a second time in this way to

prevent the victim server from being able to tell if their

response would satisfy the target difficulty. Otherwise,

servers could simply withhold such infrequent responses,

and no blocks could be published for them.

To make a block, the miner publishes the previous

block’s hash, the transactions (and their Merkle root), the

nonce N, the server_random value, the server’s certifi-

cate chain, the server key exchange parameters, and the

server key exchange signature.

4.1 Validating Blocks

To verify that a block is valid, miners must validate several

items. First, they must validate that the previous block

hash and Merkle roots are valid, as in Bitcoin. Next, they

must re-create the client_random, by hashing the pre-

vious block hash, transaction Merkle root, and provided

nonce. Then, they must validate the certificate actually

belongs to a valid victim server. This is done by check-

ing that the certificate chain is valid, rooted in a trusted

certificate authority, and the domain name is in a list of

acceptable victims. This list of valid victim domains is

generated by consensus, and details for its generation are

discussed in Section 4.3.

After the victim has been verified to be a valid one,

the public key is used to verify the server key exchange

signature. This signature is over the client_random,

server_random, and server key exchange parameters.

Finally, the block must be verified to meet the current

target difficulty. The server key exchange parameters,

signature, and the block’s nonce (N) are hashed using

4

Miner Target

ciphers = DHE

client random = SHA256(prev block||merkle root||N)

cipher = DHE

server random = 0x...

certificate chain

DH Parameters

signed(client random, server random, DH Parameters)

Figure 2: Miner–Target Interaction — A single round-trip is required for each attempt to solve the proof-of-work.

The client computes the client_random to commit to a given previous block and set of transactions, and only provides

the server the option to use Diffie-Hellman Ephemeral cipher-suites. The server then calculates a signature dependent

on the client_random and verifiable by the certificate the server provides.

SHA256, and compared to the current target difficulty.

If it is less than the target, the block is a valid one and

becomes the latest block in this chain.

4.2 Earlier TLS Versions

DDoSCoin is incompatible with versions of TLS before

1.2 (including SSL) because the server key exchange

signature does not include the client_random (or any

client-provided values). In earlier versions, the only value

that provably comes from the server (i.e. is signed by

a key tied to the victim’s identity) does not contain any

commitments from the client about the previous block, or

what transactions should be included in the block. If we

were to accept blocks where there was only a server signa-

ture that met some target difficulty, any miner could steal

another miner’s found block (and the contained block re-

ward) by changing the transactions and forwarding the

block.

If we were to somehow tie the previous block’s hash

and Merkle root into this proof, for example, by saying

that the hash of the signature and a client-provided nonce

had to be less than some target value, the proof-of-work

becomes a computational puzzle: a miner only has to

collect a single signature from the server, and try different

nonces until the hash of signature and nonce meets the

target difficulty.

Similarly, proof-of-work target difficulties can not be

based off of the purported shared secret that results from

a connection, because the client can always choose dif-

ferent key exchange values to ensure that the resulting

shared secret is less than than the threshold difficulty,

resulting in a computational puzzle. Even values sent

by the server—such as the Finished message that con-

tains a MAC dependent on the shared secret—can be

(re)computed by the client.

As an aside, this interesting property gives rise to an

observation that with respect to clients, the contents of

TLS connections are deniable. That is, it is not possible

for a client to record a TLS connection, including its

chosen secrets, and report this to a third party in a way

that cryptographically proves what the server says. This

property has been accomplished in different more efficient

ways in various secure messaging protocols such as Off-

the-Record (OTR) [4].

Besides TLS 1.2, there are other cryptographic proto-

cols that involve the server signing a client-chosen value.

For example, the SSH protocol key exchange involves the

server signing a hash over the previous handshake mes-

sages, including the client-provided identification (ver-

sion) string, and Diffie-Hellman public value [21]. Either

of these fields could be used to encode the necessary com-

mitments (previous block, Merkle root, and nonce) used

in DDoSCoin. However, SSH server identities are gener-

ally not signed by a trusted party, making verification that

a miner has communicated with a particular server more

challenging. Nonetheless, identities in an SSH-based

DDoSCoin could simply be the server’s host key rather

than a domain in a CA-signed certificate.

4.3 Victim Selection

If DDoSCoin accepted proofs against any TLS 1.2 server,

miners would be incentivized to set up their own TLS

servers locally, and focus exclusively on “attacking” those

servers instead of remote ones. Since the miner would

have access to the private key for that server, they would

not be required to even create network connections, reduc-

ing the proof-of-work to a computational puzzle rather

than one based on participation in a denial of service over

5

Miner victim.com

…

1

Prev block hash: 2f7c63…

Tx Merkle root: 9c8f15…

Nonce: 63a108…

Proof-of-DDoS: 8b2761…

Transactions:

New Proof-of-DDoS block
2

Prev block hash: cc2b1a…

Tx Merkle root: 839f2c…

Diff: + vicX.com

Transactions:

Proof-of-Stake block

* -> Miner

Alice -> Bob

Dave -> [DDoS vic2.com]

 (PAY_TO_DDOS) 3

Bob -> Bob (coinstake)

[DDoS vic2.com] -> Eve

(PAY_TO_DDOS) {proof}

…

5

4

Figure 3: DDoSCoin Design — DDoSCoin miners make repeated connections to a victim server running TLSv1.2 1©.

In each handshake, the miner commits to the previous block, a transaction merkle root, and a secret nonce. Eventually

the victim server will respond with a signed message that meets the current proof-of-DDoS target difficulty, and the

miner can create a new block 2© that includes this proof. Victim targets can be selected in two ways: First, participants

can pay into one-time bounties for specific victims 3©, which can be redeemed by anyone in a special PAY_TO_DDOS

transaction 5© if they can provide a similar proof-of-DDoS against that victim. Second, the list of valid victims that

blocks can be mined for can be updated by proof-of-stake blocks 4©.

a network. To prevent this, DDoSCoin must have a way

to agree on which victims are acceptable targets for the

proofs-of-DDoS to be considered valid. Similarly, it is

important to focus the denial-of-service effort toward a

small number of victims in order to have the most impact.

One simple solution is to hardcode a set of victim iden-

tities into the protocol. For example, DDoSCoin’s pub-

lished code could contain the identities (domain names)

of Facebook’s servers, and only allow and incentivize

attacks against them. However, there are many attackers

that might feel uncomfortable attacking Facebook, but

are willing to participate in attacks against other web-

sites. In addition, having only a single or small set of

victim websites is a risk to DDoSCoin: if those websites

all go offline or successfully mitigate the attacks, no fu-

ture DDoSCoin blocks can be mined, and the currency

will stall. If this happened, all DDoSCoins in circulation

would become nearly worthless, as there would be no way

to safely transact them.

These issues lead to a few subtle requirements for

choosing valid victims. First, there must be limits on

who is allowed to be a victim, otherwise miners can cre-

ate local computational puzzles. At the same time, there

must be enough targets in order to be robust against stalled

blockchains. Similarly, the list of victims must be flex-

ible in order to allow removing targets as they become

impractical to attack (either through successful attack or

mitigation), and adding new ones to take their place.

To address these issues, we propose two mechanisms

that DDoSCoin can employ to allow victims to be se-

lected by consensus. The first mechanism allows anyone

to commit DDoSCoins to whoever can prove they sent

an amount of traffic to a target (PAY_TO_DDOS). The

second allows for updating the list of victim domains that

miners are allowed to attack when mining for blocks.

4.3.1 Pay-to-DDoS

In order to allow victims to be (temporarily) selected for

DoS, DDoSCoin allows “bounties” for targeting specific

servers. To accomplish this, DDoSCoin introduces a new

payment opcode, PAY_TO_DDOS, that can be used in

transactions subject to certain constraints. This opcode

takes two arguments in an output script: a string represent-

ing a domain name that the payer wishes to have attacked,

and a target difficulty corresponding to the amount of

connections the payer wishes to be made. Once this trans-

action is stored in a valid block, anyone can collect its

6

reward by creating a connection to the specified victim

server and obtaining a response that meets the given tar-

get difficulty. These connections are made similar to how

miners connect to victim servers to create blocks, but with

a few important differences. First, the client_random

is generated as follows:

SHA256(txid||out put_script||N) (2)

Where txid is the transaction ID of the

PAY_TO_DDOS transaction, out put_script is the

SHA256 hash of the output script the payee wants to

collect the payment with, and N is a 32-byte random

nonce. The client then makes connections to the specified

victim domain until it gets a response that meets the target

difficulty specified by the PAY_TO_DDOS transaction,

i.e. the hash of the key exchange parameters, signature,

and nonce are less than the target hash value.

The bounty poster must select a difficulty that is appro-

priate for the target and reward. If the difficulty is too

high, no miner will attack the target, because the miners

do not want to waste effort. Also, if the difficulty is too

low, the reward will be claimed for little degradation of

service.

To collect the bounty reward, the client creates an input

script that will satisfy the PAY_TO_DDOS output. This

includes the parameters of the connection: the nonce,

the server_random value, the server’s certificate chain,

the server key exchange parameters, and the server key

exchange signature. To validate the transaction, a miner

must recompute the client_random as above. Then,

the miner must verify that the certificate is valid for the

provided domain (and rooted in a trusted CA), and that

the certificate’s signature over the server key exchange

message is valid. Finally, the server must check that

the server’s response meets the target difficulty specified

by the PAY_TO_DDOS transaction. If it does, then the

transaction is valid and can be included in a block, letting

the client collect the reward.

There are a couple important features of this transaction.

First, the reason the transaction ID of the PAY_TO_DDOS

transaction is committed to in the client_random is to

prevent a client from “double-claiming” multiple bounty

rewards with the same proof-of-DoS. Similarly, the client

commits to the output script of the claiming transaction

to prevent others from being able to swap it for their own,

thereby “stealing” the proof-of-DoS and collecting the

reward themselves. These properties combined allow two

mutually-distrusting parties to directly and safely transact

currency in exchange for a specified-amount of work in a

DoS attack.

Since PAY_TO_DDOS transactions can be claimed

by anyone, there is a risk to the collector that by the

time they complete their DoS attack, someone else will

have collected the payment. Any target specified by a

PAY_TO_DDOS transaction could use their privileged

position to turn the proof-of-work into a computational

challenge. Since the challenge is no longer bound by the

network, the target can claim the reward for themselves.

Quickly solved PAY_TO_DDOS transactions with no

degradation of service and sufficiently difficult proof-of-

work could indicate to the bounty provider that the target

is claiming its bounty.

In addition, a potential victim website could disincen-

tivize attacks by submitting PAY_TO_DDOS transactions

that they can quickly solve locally. This would cause

attackers to try to connect to them, and eventually even

collect a response that meets the target difficulty. How-

ever, when the attacker went to publish this to collect the

reward, the victim could publish their proof, essentially

double-spending the PAY_TO_DDOS transaction. With

some probability, the victim’s transaction will “win” and

prevent the attacker from collecting the reward. Over

the long term, attackers may be wary of attacking such

targets, and instead require higher payouts for attacking

them to cover such risks.

While this new payment type allows a one-time pay-

ment for attacking a particular target, it cannot be used to

update the long-term victim list used by miners to decide

valid victims for blocks. Otherwise, miners could make a

PAY_TO_DDOS transaction specifying their own local

domain in order to always have a local-computation puz-

zle that allowed them to create new blocks in the future.

Instead, a second method for choosing victims must be

employed.

4.3.2 Alternate Proof-of-Work

In order to allow the victim list to be updated dynami-

cally, DDoSCoin uses Proof-of-Stake to let currency hold-

ers make small changes to the list of acceptable victim

domains. Using proof-of-stake ensures that updates are

only done by actors that already have a substantial stake

in the currency, either by purchasing it or by previously

participating in the mining themselves.

To update the list, a currency holder “mints” a proof-of-

stake transaction similar to Peercoin. First, they must hold

a number of coins that have been unspent for more than

30 days. After the 30 days have passed, each second the

minter hashes the aged transaction, a recent stake-modifier

block, and a current seconds-resolution timestamp. If

this hash is less than the current proof-of-stake target

difficulty multiplied by the coin-age being consumed in

this transaction, then the currency holder is allowed to

make a new proof-of-stake block. Inside this block, the

currency holder can make one addition to or one deletion

from the current victim list.

Proof-of-stake blocks contains no coinbase or coinstake

reward, and transaction fees are not collected. Thus, there

7

is no direct short-term monetary incentive to produce

such a block. The intention is that this will encourage

only those with a vested interest in the long-term success

of DDoSCoin to participate in updating the victim list.

After this block has been published, miners must wait

until 10 proof-of-DoS blocks have been mined with the

old list of valid domains before the specified delta to the

change list is applied. This discourages malicious miners

from forking the chain at an earlier block with a proof-of-

stake block adding their local domain to the victim list,

and immediately mining blocks on top of it to catch up to

the main chain.

4.3.3 Difficulty Adjustment

The difficulty of proof-of-work changes dynamically in

DDoSCoin, as it does in other crypto-currencies, in order

to limit the rate at which new blocks are mined. However,

in DDoSCoin, the difficulty is adjusted separately for

each target domain. Each victim domain has its own

difficulty since domains could have different maximum

throughputs, allowing more or fewer connections from

all miners over the same time period. Consider a single

domain that handles many connections per second added

to the target list. The miners would connect to that server

more often, since it will give more chances at mining a

block, and thus relieve traffic from the other targets.

DDoSCoin adjusts difficulty for a given domain by

looking at the previous BLOCK_ADJUST blocks, and

counting the number of blocks mined against the given

domain. This ratio is compared to the expected ratio

based on the current size of the victim list and the time

over which these blocks were mined (based on a times-

tamp included in the blocks). If more blocks were mined

than expected, the difficulty for this domain is increased.

Similarly, if fewer blocks were mined, the difficulty for

the domain is decreased. This mechanism allows target

domains that somehow become more difficult to reach

to quickly return to a more appropriate difficulty, with-

out having to wait for many blocks mined at the high

difficulty.

A target’s initial difficulty in DDoSCoin is decided by

the stakeholder that introduces the target in a proof-of-

stake block. The stakeholder is incentivized to not set the

difficulty too low, as many coins would be mined quickly,

devaluing the stakeholder’s own coins. If the difficulty is

set too high, there will be a delay as other domains are

mined, and the difficulty adjusts down to the appropriate

level.

4.4 Implementation

To evaluate the performance and effectiveness of

DDoSCoin, we implemented our proof-of-DDoS func-

tion in 582 lines of C. Our mining code uses libevent [15]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Time (ms)

Normal
Under DDoS

Figure 4: DDoSCoin effect — We set up a quad-core

nginx HTTPS server on a local network, and used Apache

benchmark (ab) to measure page load times under normal

conditions (no DDoSCoin miner running) and with a sin-

gle DDoSCoin instance. DDoSCoin increases the average

page-load time 6-fold from 43ms to over 291ms.

and OpenSSL [19] to create concurrent connections to-

ward a specific target, crafting a client_random in the

specified way and testing each response to see if it satisfies

a hard-coded proof-of-DDoS target difficulty.

We tested our proof-of-DDoS function (miner) against

a quad-core TLS server under our control, running nginx

serving the default page and connected to our attacker

over a local Gigibit Ethernet network. When running

our miner, the CPU consumption of the server quickly

reaches 100% utilization on all 4 cores, while the attacker

only requires approximately 30% on a single core. This

produces over 3000 TLS connections per second, and

slows response times of the webserver considerably. We

used Apache benchmark (ab) with 1000 connections with

a concurrency of 50 to quantify this, and tested the server

under normal conditions (no miner running) and under

DoS (miner running). As shown in Figure 4, we find that

the average server response time increases by more than

a factor of 6 when our miner is running.

5 Discussion

Many positive results have come from cryptocurrencies.

Bitcoin was invented with the goal of creating a decen-

tralized digital currency, and to that end has been more

sucessful than most imagined. Banks are turning to

“Blockchain technology” to solve issues regarding public

ledgers. Primecoin and TorPath use cryptocurrencies to

incentivize positive actions. However, this positivity is not

inherent to cryptocurrencies. DDoSCoin demonstrates

maliciousness inherent to a currency’s design, turning

the notion of what constitutes a “useful” proof-of-work

around.

DDoSCoin uses a proof that the miner has connected

to a given server a sufficient number of times as its proof-

8

of-work. This is an indirect measurement of how much

bandwidth or resources are being spent by the victim. Al-

though miners only receive DDoSCoins in return for this

effort, these can be traded in for other currency via cryp-

tocurrency exchanges. In addition, because DDoSCoin

uses transactions similar to Bitcoin, trust-less (atomic)

cross-chain transactions can allow DDoSCoins to be

traded for Bitcoins without requiring a trusted 3rd party

intermediary. Thus, even outlawing DDoSCoins from

exchanges does not prevent a black-market from getting

around these sanctions.

An interesting choice in the design of DDoSCoin is

target-setting is done dynamically, and by consensus. A

given target can go offline, or in some other way defend

against DDoSCoin at any point. When this happens, the

currency cannot stall, as then no coins could be transacted.

This necessitates dynamic target-setting.

While stakeholders have control of the target list, a

majority of miners could use their choice of previous

block to veto a given proof-of-stake block. This would be

a fork of the blockchain. If a clear majority treat a block

as malformed because it introduces an undesired domain,

then the longer chain wins, and the undesired domain is

not included in the target set, and any blocks mined on the

chain with the vetoed target are not part of the blockchain.

This allows the miners to coordinate and self-enforce a

blacklist, or whitelist, of target domains, so long as they

have sufficient participation in the policy.

Although not yet implemented, the current TLS 1.3

proposal appears to also have the necessary properties

that enable DDoSCoin [20]. In particular, the Certificate

Verify message includes a signature from the server over

essentially all prior handshake messages, including the

Client Hello that contains the client_random. Thus,

DDoSCoin could be used against TLS 1.3 servers with

only minor modifications. This should be considered

in the design of TLS 1.3 due to the long life of TLS

implementations.

5.1 Ethical Considerations

While we acknowledge this work introduces an idea that

could be used to incentivize malicious behavior, we have

taken precautions to limit harm. First, in demonstrating

our proof-of-concept and evaluating our proof-of-DDoS

code, we have only “attacked” websites we have owner-

ship and authority over. Furthermore, we are not publish-

ing a working alt-coin that uses this proof-of-DDoS, but

rather a conceptual description of one. We believe it is

important to fully disclose potential attacks, even those

that require the development of an altcoin to execute. This

is especially important in the face of the impending com-

mitment to the design of TLS 1.3, and compounded by

how long TLS/SSL protocol versions stay in active use.

5.2 Defenses

Victim websites can use several methods to defend them-

selves from DDoSCoin miners. First, websites can simply

disable TLS 1.2 entirely, and only support earlier versions

such as TLS 1.0 [6] and TLS 1.1 [7]. While older ver-

sions of TLS 1.0 clients may still be vulnerable to the

BEAST attack [9], most modern clients have mitigations

for this attack, and it likely remains the safest short-term

defense against DDoSCoin. The downside of disabling

support for TLS 1.2 is losing the ability to negotiate au-

thenticated encryption cipher modes with clients, which

may decrease performance of implementations that have

hardware acceleration for such modes.

Alternatively, web servers can disable cipher modes

that require signatures from the server. This would re-

move support for forward secure cipher suites, meaning

that as long as the server’s private key is accessible, any

previously recorded TLS connections could be decrypted.

We note that the current drafts of TLS 1.3 propose to re-

move non-forward secure cipher suites entirely, possibly

making it more difficult to defend against DDoSCoin in

TLS 1.3.

Although dramatically changing existing deployed ver-

sions of TLS is unrealistic, it may still be possible to

influence the design of the TLS 1.3 standard to make it

incompatible with DDoSCoin. For example, rather than

having the server sign all of the handshake messages (in-

cluding those from the client), the server could sign only

the handshake messages which it sent. This may not fully

mitigate DDoSCoin, as some of the parameters (such as

the selected cipher suite or elliptic curves) may have orig-

inally been provided by the client. We note that while

the server signing only its own messages still mitigates

many previous known bugs such as those revealed in the

FREAK TLS attack, there may be other subtle bugs that

are exposed by servers not signing client’s messages.

Websites could also attempt to thwart DDoSCoin by

participating in the mining themselves. Because the vic-

tim website will have local access to its private key, they

will have an advantage over remote clients. With this

advantage, the victim might be able to mine enough

DDoSCoins to mint a proof-of-stake block that removes

itself from the list, or raise the difficulty of mining a block

high enough that a remote miner has a negligible chance

of succeeding.

Finally, websites could attempt to go after mining oper-

ations legally. Publishing a proof-of-DDoS block in the

DDoSCoin blockchain may reveal the intent of a miner

to attack a service for financial profit. If the victim web-

server is able to log the traffic they receive, they can

discover the IP address of the party given a published

proof-of-DDoS block. However, as many attackers may

use proxies, botnets, or bullet-proof hosting to carry out

9

their attacks, finding an attacker’s IP address may not be

sufficient for legal action.

6 Conclusion

In this paper, we have presented a proof-of-DDoS cryp-

tocurrency that allows miners to prove their involvement

in sending a large amount of requests to a specified victim

webserver. Proof-of-DDoS can be used to replace proof-

of-work in a cryptocurrency setting, provided that there

is consensus around what victims are valid targets. Our

conceptual altcoin, DDoSCoin, provides such a consensus

through two mechanisms: PAY_TO_DDOS, whereby a

bounty can be set for DDoSing a given victim domain,

and proof-of-stake updates to the list of valid victims.

Cryptocurrency innovation continues to produce new

and useful proof-of-work replacements. Still, proving

access to arbitrary resources remains a difficult challenge.

In this direction, DDoSCoin delivers a novel technique for

proving the use of bandwidth to a (potentially unwilling)

target domain. We hope that this work encourages oth-

ers to discover and innovate on novel proof-of-resource

puzzles.

Acknowledgements

The authors are grateful for the support and various dis-

cussions from our colleagues on DDoSCoin. In particular,

the authors wish to thank David Adrian, Matt Bernhard,

and Drew Springall for their discussions concerning the

feasibility of the proof-of-DDoS idea. We also thank the

anonymous reviewers for their helpful feedback.

References

[1] Litecoin - open souce P2P digital currency. https://litecoin.org,

2011.

[2] Blockchain.info. Bitcoin hash rate. https://blockchain.info/charts/

hash-rate.

[3] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind

Narayanan, Joshua A Kroll, and Edward W Felten. SoK: Re-

search perspectives and challenges for Bitcoin and cryptocurren-

cies. In Security and Privacy (SP), 2015 IEEE Symposium on,

pages 104–121. IEEE, 2015.

[4] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record

communication, or, why not to use PGP. In Proceedings of the

2004 ACM workshop on Privacy in the electronic society, pages

77–84. ACM, 2004.

[5] Nxt Community. Whitepaper:nxt. http://wiki.nxtcrypto.org/wiki/

Whitepaper:Nxt, 2013.

[6] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246

(Proposed Standard), January 1999. Obsoleted by RFC 4346,

updated by RFCs 3546, 5746, 6176, 7465, 7507.

[7] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)

Protocol Version 1.1. RFC 4346 (Proposed Standard), April 2006.

Obsoleted by RFC 5246, updated by RFCs 4366, 4680, 4681,

5746, 6176, 7465, 7507.

[8] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)

Protocol Version 1.2. RFC 5246 (Proposed Standard), August

2008. Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568,

7627, 7685.

[9] T Duong and J Rizzo. Here come the ⊕ ninjas. BEAST attack,

2011.

[10] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey,

and J Alex Halderman. A search engine backed by Internet-wide

scanning. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 542–553. ACM,

2015.

[11] Let’s Encrypt. Let’s Encrypt - free SSL/TLS certificates. https://

letsencrypt.org/.

[12] Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen.

A TorPath to TorCoin: Proof-of-bandwidth altcoins for compen-

sating relays. 2014.

[13] Sunny King. Primecoin: Cryptocurrency with prime number

proof-of-work. July 7th, 2013.

[14] Sunny King and A Nadal. Ppcoin: Peer-to-peer crypto-currency

with proof-of-stake. 2012.

[15] Nick Mathewson and Niels Provos. libevent: An event notification

library. http://libevent.org/.

[16] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan

Katz. Permacoin: Repurposing Bitcoin work for data preservation.

In Security and Privacy (SP), 2014 IEEE Symposium on, pages

475–490. IEEE, 2014.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,

2008.

[18] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew

Miller, and Steven Goldfeder. Bitcoin and Cryptocurrency Tech-

nologies. 2 2016.

[19] OpenSSL Project. OpenSSL: Cryptography and SSL/TLS toolkit.

https://www.openssl.org/.

[20] E. Rescorla. The transport layer security (TLS) protocol version

1.3 draft-ietf-tls-tls13-12, March 2016.

[21] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport

Layer Protocol. RFC 4253 (Proposed Standard), January 2006.

Updated by RFC 6668.

10

https://litecoin.org
https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/hash-rate
http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt
http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt
https://letsencrypt.org/
https://letsencrypt.org/
http://libevent.org/
https://www.openssl.org/

	Introduction
	Related Work
	Background
	Cryptocurrency
	Proof-of-Stake

	DDoSCoin Design
	Validating Blocks
	Earlier TLS Versions
	Victim Selection
	Pay-to-DDoS
	Alternate Proof-of-Work
	Difficulty Adjustment

	Implementation

	Discussion
	Ethical Considerations
	Defenses

	Conclusion

